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Abstract

Recent empirical research has documented that distortions of allocative effi-

ciency among heterogeneous firms can have large aggregate consequences. This

paper evaluates the size of these effects when distortions affect not only resource

allocation but also the evolution of firm level productivity itself. To this end,

we partially endogenize the evolution of firm level productivity in a standard

heterogeneous firm model by allowing firms to engage in costly, purposeful exper-

imentation: Firms can engage in risky experiments, which take the form of pro-

ductivity shocks. Results from failed experiments can be discarded. We then show

that endogenous productivity implies up to twice as large effects of productivity-

dependent distortions on aggregate consumption.

JEL codes: E24, L16, O40.

Keywords: aggregate productivity, firm dynamics, selection, experimentation,

entry and exit.
aWe are grateful for comments from the editor, three anonymous referees, and seminar participants

at meetings of the Society of Economic Dynamics and the Canadian Economic Association and at
the 8th Meeting of German Economists Abroad. Poschke thanks the Social Sciences and Humanities
Research Council (SSHRC) and the Fonds québécois de la recherche sur la société et la culture (FQRSC)
for research support. The views expressed in this paper do not necessarily reflect those of the Swiss
National Bank.

bAddress: Swiss National Bank, P.O. Box, CH-8022 Zürich.
cCorresponding author. Address: McGill University, Department of Economics, 855 Sherbrooke

St West, Montreal QC, Canada H2J 3R5. Phone: +1 514 398 4400, extension 09194. Fax: +1 514 398
4938. email: markus.poschke@mcgill.ca.

1



1 Introduction

Recent empirical research has documented that distortions of allocative efficiency among

heterogeneous firms have potentially large aggregate consequences and thereby can

contribute to explaining differences in per capita income across countries.

These papers have focussed on the impact of distortions on the allocation of inputs

across heterogeneous production units, taking either the distribution of productivity or a

stochastic process for productivity as given. This abstracts from a potentially important

channel: If firms can affect the evolution of their productivity, then distortions can

influence choices along this margin and through this, firm level productivity growth

and aggregate productivity. Their effect could thus go beyond resource misallocation.

This paper quantitatively assesses the importance of this channel.1

To do so, we model firms as using purposeful experimentation to promote their

productivity. It is known from firm-level analyses that firms can influence the risk

they take (see e.g. Coles, Daniel, and Naveen 2006) and that experimenting with new

products and processes is a defining feature of innovation at the firm level. For instance,

every year, about 25% of consumer goods for sale are either new or will be discontinued

the next year, at least 40% of new goods are sold only for a single year, and plants adopt

only between half and a third of the technologies they try (McGuckin, Streitwieser, and

Doms 1996; Broda and Weinstein 2010; see also Lentz and Mortensen 2008 and Bernard,

Redding, and Schott 2010).

There is a broad management literature that interprets this process of churning at

different levels as “innovation through experimentation” (see e.g. Thomke 2003). The

finding that R&D outcomes are very uncertain (Doraszelski and Jaumandreu 2009)

points in the same direction. All of this suggests that to some degree, firms deliberately
1Bhattacharya, Guner, and Ventura (2011) pursue a similar objective and quantify the effect of

distortions when managerial skills are endogenous. Further related papers are Bello, Blyde, and
Restuccia (2011), Hsieh and Klenow (2012), Ranasinghe (2011; 2012) and Restuccia (2011).
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expose themselves to “productivity risk” in order to improve their productivity, but can

control the extent of this risk by choosing their experiments.

We model experimentation in a very simple way: in the setting of a heterogeneous-

firm model in the tradition of Hopenhayn (1992), we allow firms to experiment with

their production process every period. The experiment is modelled as drawing a random

innovation to the firm’s productivity.2 (We also allow for additional shocks the firm

cannot influence.) Firms can choose how risky they want their experiment to be;

riskier experiments are draws from a distribution with a higher variance. Firms are

not forced to stick with the outcomes of failed experiments; they can undo experiments

that reduce their productivity.3 Because of this option (think of not implementing

R&D findings or pulling an unsuccessful new product off the market), the expected

value of experimenting is positive and increases in the riskiness of the experiment.

This is balanced by a higher cost of conducting risky experiments compared to more

incremental/marginal ones so that in equilibrium, firms choose experiments with limited

risk. We integrate this experimentation process into a full quantitative model of firm

dynamics with endogenous entry and exit.4

The possibility to reject failed experiments implies that, in expectation, an experi-

menting firm’s productivity grows. In promoting productivity, experimentation is akin

to R&D and can in fact be interpreted as a generalized form of R&D, which after all

essentially is directed experimentation. Yet, our approach also allows capturing the
2When productivity is measured as revenue productivity, as is the case in almost all data sets used

in productivity measurement, fluctuations in product quality or consumer tastes are indistinguish-
able from productivity fluctuations. For this reason, our setting in terms of productivity risk and
experimentation with processes can also be interpreted in terms of experimentation with products.

3Well-known reversed experiments are Coca Cola’s New Coke, which served as Coca Cola’s flagship
product for less than 3 months in 1985 (thanks to Pedro Bento for suggesting this example), and Denver
airport’s automated baggage handling system, which was turned off in 2005 without ever having been
fully used (for this and some further examples, also see Holmes, Levine, and Schmitz, 2008).

4Because the way we model experimentation is designed to fit well in a macro model, it is quite
distinct from the theoretical literature on experimentation (see e.g. Bolton and Harris, 1999; Keller,
Rady, and Cripps, 2005; Acemoglu, Bimpikis, and Ozdaglar, 2011). These papers consider bandit
problems that correspond to the choice between discrete projects.
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activity of the large portion of firms which do not report patenting or R&D spending

but still innovate. (These are non-negligible; see also Francois and Lloyd-Ellis (2003);

Klette and Kortum (2004); Syverson (2011).)

We then calibrate our model using information on firm dynamics in the United

States to quantify the effect of distortions on aggregate outcomes. We consider two

types of distortions. First, we analyze the effect of productivity dependent distortions.

These have been identified in recent research (Guner, Ventura, and Xu, 2008; Restuccia

and Rogerson, 2008) as particularly damaging to aggregate productivity because the

resulting misallocation of resources is not random, but specifically directs resources

from high to low-productivity producers. Secondly, we assess the effect of firing costs,

which hamper the efficient reallocation of resources across production units and thereby

reduce aggregate productivity (Hopenhayn and Rogerson, 1993).

We find that productivity dependent distortions strongly affect aggregate outcomes.

For example, a tax that is linear in productivity with slope and intercept such that the

median firm pays no tax, but the 0.1% most productive firms face a 10% tax, reduces

aggregate consumption by 2.1%. This large change occurs although on average, firms

face a tax rate of 0. More than half of the change is due to the effect of reduced

experimentation. Increasing the slope such that top firms face a 20% tax rate reduces

experimentation further and reduces consumption by 3.5% compared to an undistorted

economy. The productivity dependent specification is key here: Productivity dependent

distortions discourage firms from rising to the top, as they would be subject to larger

distortions. In contrast, shifting the tax schedule without changing its slope only affects

output and consumption by discouraging capital accumulation, but has hardly any effect

on experimentation.

We also quantify the effect of firing costs. Compared to productivity dependent

distortions, they turn out to have a more limited effect on experimentation. The reason
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is that, while they discourage some firms from experimenting, they encourage others to

experiment more in order to reduce the risk of having to engage in costly layoffs in the

future.

Endogenous productivity, here captured through experimentation, thus amplifies the

effect of distortions on aggregate productivity substantially. The paper is organized as

follows. Section 2 presents a model of firm dynamics with endogenous experimentation.

Section 3 presents the calibration. The effects of distortions are described in Section 4,

and Section 5 concludes.

2 A Model of Endogenous Experimentation

In this section, we present a model in which firms can influence the evolution of their

productivity through experimentation. We model this process of experimentation by

assuming that firms are hit by idiosyncratic productivity shocks whose variance they

can choose. We interpret these shocks as random outcomes of experiments through

which firms try to improve their productivity. Firms can choose how risky an experi-

ment is; this is reflected in the variance of the shock they receive. If the result of a firm’s

experiment is not as desired, the firm can discard the experiment and revert to the pro-

ductivity it had before undertaking the experiment. We assume that experimentation

is costly in terms of current output.

Because there is free entry and firms have the possibility of exiting, the measure of

active goods-producing firms in the economy is endogenous. In addition to these firms,

there also is a representative household and a sector of perfectly competitive financial

intermediaries. Time is discrete.
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2.1 Preferences

Household preferences are given by

∞∑
t=0

βtU (ct) =


∑∞

t=0 β
t c

1−σ
t

1−σ for σ > 0, σ 6= 1∑∞
t=0 β

t log (ct) for σ → 1,

where β ∈ (0, 1). Households can consume or save by investing in shares of output-

producing firms and by renting capital to them via a sector of perfectly competitive

financial intermediaries. Capital depreciates at a rate δ. In equilibrium, financial

intermediaries don’t make profits, all hold the market portfolio and, absent aggregate

uncertainty, pay a net return r on consumers’ investments. A household’s budget

constraint then is

ct = wtl + at (1 + rt)− at+1,

where at denotes assets held at the beginning of period t and household labor supply

is constant at l. The Euler equation for the accumulation of assets then is

c−σt = β (1 + rt+1) c
−σ
t+1. (1)

2.2 The Problem of the Firm

A given firm i produces output with the production function

y = [ez · θ(σε)]1−α−γ lαkγ (2)

and sells it in a competitive market. We normalize the price of output to 1. Firms

differ in their productivity z and choose their labor and capital inputs l and k, which

have user costs of w and R = r + δ per unit, respectively. The term θ(σε) represents
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a disruption cost of experimentation, which depends on the experimentation intensity

chosen by the firm, σε. This kind of cost is analogous to Holmes, Levine, and Schmitz

(2008), who assume the presence of similar “switchover disruption costs” in technology

adoption in their analysis of the link between competition and productivity.

With the optimal choice of labor and capital inputs given productivity z and a

choice of σε, profits are

Π(z, σε) = (1− α− γ)
( γ
R

) γ
1−α−γ

(α
w

) α
1−α−γ

ezθ(σε). (3)

A firm’s productivity evolves stochastically and is driven both by exogenous shocks

and by the outcomes of the firm’s experiments. The law of motion of productivity is

z′ = z + max(ε, 0) + u.

Here, the innovations u are drawn from a cdf H(u) and represent any perturbations

to a firm’s productivity which are independent from experimentation and over which

the firm has no control, such as changes in customers’ tastes or exogenous shocks to its

technology.

Experimentation is captured in the innovation max(ε, 0). Firms can conduct one

experiment per period. This consists in drawing an innovation ε from a distribution

with cdf Φσε(ε). The max operator in the law of motion for productivity reflects that

firms can discard the results of unsuccessful experiments. Draws of ε < 0 would imply

decreased productivity if the result of the experiment was adopted. Firms can forego

results of such failed experiments and instead employ their previously used technology.

In this case, they still suffer the disruption cost of the experiment, but can avoid the

impact of the experiment on productivity.

The key decision involved in experimentation is that of how much risk to take.
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This choice is represented by σε, which determines the variance of ε.5 Since firms

can conduct one experiment per period, they can adjust σε every period. On the one

hand, riskier experiments have a larger expected impact on productivity because of the

option to reject failures. On the other hand, choosing riskier experiments is costly as it

is disruptive of current production: we assume that the disruption cost function θ(σε)

is continuously differentiable for σε ≥ 0 and that θ′(σε) < 0 and θ′′(σε) < 0, so that the

cost of experimenting is convex.

We assume that larger experiments are more disruptive because they may be more

difficult and costly to implement: In the case of process innovation, fundamentally

changing the way a factory works bears a larger potential for productivity changes

(improvements if the experiment is successful), but is also more costly to put into

practice. In the case of product innovation, introducing a completely new product may

also necessitate changes in the production process, and in addition may be more costly

in terms of promotional activity. In the case of formal R&D, one can argue that more

(potentially) ground-breaking research is more expensive.

While formal R&D can be viewed as a form of experimentation in our model, we

interpret experimentation more broadly as encompassing other activities aimed at en-

hancing productivity. These may be much less formal than R&D. Also, our setup

implies that the technological advances that are generated within the model are em-

bodied: an individual firm’s productivity gains deriving from its experimentation are

tied to its production facilities and do not spill over to other active firms.

Firm value and the exit decision. Continuing firms need to pay a fixed operating

cost of κf per period to produce. Firms have the option to avoid this by permanently
5We assume that experimentation intensity σε has no effect on eε, the expectation of gross produc-

tivity growth due to experimentation before the accept/reject decision. Since firms can discard failed
experiments, riskier experiments do of course have a larger expected benefit if they are successful.
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exiting. They may do so after learning their realizations of ε and u. Finally, there is a

probability χ every period that a firm has to exit exogenously.

The value of a firm is

V (z) = max
σε

{
Π(z, σε)− κf +

1− χ
1 + r

Eσε max [V (z + u+ max(ε, 0)), 0]

}
. (4)

This value function embodies three decisions by the firm. The first max operator

requires optimal choice of σε, the last one optimal acceptance or rejection of the ex-

perimental outcome, and the middle one optimal exit or continuation. The last two

decisions are taken knowing the realized values of ε and u. The expectation is taken

over these two random variables. The subscript σε indicates that the distribution of ε

depends on the firm’s choice of σε.

For the continuation decision, the optimal strategy is to choose a threshold level zx

for the continuation productivity below which the firm exits. The optimal threshold

satisfies

V (zx) = 0.

The optimal acceptance/rejection decision for experimental outcomes implies accepting

if ε > 0. These decisions combined with the exogenous shocks u and χ determine a firm’s

probability of exiting the market or of remaining active and transiting from productivity

z to productivity z′. Let the productivity transition operator, which summarizes the

effect of these transitions on the firm productivity distribution, be Q.

Entry. There is free entry, and entry requires a sunk investment of κe units of the

good. New entrants draw their initial level of productivity from a distribution η(z).

Entry is optimal as long as its value exceeds its cost. Under free entry it must therefore

be that, in equilibrium, the expected value of entry equals its cost whenever there is
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positive entry.

The entry rate e thus is endogenous. Together with the endogenous exit rate, it

drives the evolution of the measure of firms in the market. The law of motion of the

productivity distribution of active firms, µ, then is

µ′ = Qµ+ eη.

Following Luttmer (2012), a stationary distribution µ exists as long as the exogenous

exit rate χ is large enough.

Productivity and optimal experimentation. Figure 2.2 shows optimal experi-

mentation as a function of z, computed for the benchmark equilibrium implied by the

calibration described in Section 3 below. Optimal σε is zero for firms that face a prob-

ability of exiting at the end of the period that is close to 1, since they hardly benefit

from experimenting. As z rises and the exit probability declines, the expected benefit of

experimentation rises, and firms experiment more. Once the exit probability becomes

negligible, optimal σε becomes flat. Our computations suggest that this occurs for the

following reason: Since the profit function is linear in z, the computed value function is

also linear in z for firms that are so productive that the option to exit has no value. In

this range, higher z then affects the cost and expected benefit of experimentation in the

same way for all z. As a consequence, the optimal choice of σε becomes independent of

z in this range. Large firms spend a constant fraction of output on experimentation.
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Figure 1: The experimentation policy
Notes: Parameters are from the calibration in Section 3 and are given in Table 2 below.

3 Calibration

In this section, we calibrate the model to U.S. data. The calibrated model then allows

us to measure the importance of experimentation and to gauge the potential effect of

distortions.

To calibrate the model, we use commonly used values from the literature for some

baseline parameters and choose the remaining ones jointly to fit a set of data moments.

We pay particular attention to match some static and dynamic features of the U.S.

firm size distribution. Matching these is crucial for a realistic assessment of the effect

of distortions, since these affect the firm size distribution.

The length of a time period is set to one year. The parameters which are set based
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on a-priori information are the production function parameters α and γ, the discount

factor β, and the depreciation rate δ. The production function parameters α and γ are

very important, as they control how much distortions affect a firm’s input and output

choices. Existing evidence suggests that 1 − α − γ, which also is the profit share in

output, lies between 0.10 and 0.20. (See e.g. Atkeson, Khan, and Ohanian (1996) or

Pavcnik (2002).) We therefore set 1 − α − γ to 0.15.6 Splitting the remainder into

roughly 70% labor income and 30% capital income implies α of 0.6 and γ of 0.25.

In a stationary equilibrium of the model economy, β and δ only matter in so far

as they determine the real interest rate and the user cost of capital. We target a real

interest rate of 4 percent, implying a β of 0.96. We choose δ of 0.08, which implies a

user cost of capital R = 1/β − 1 + δ of 12%. The resulting investment to output ratio

of about 16.5% is close to the observed U.S. value for private fixed investment. The

implied capital to output ratio is 2.1. As in the data, this number excludes investment

in experimentation and firm start-up costs.

We assume that the disruption cost function takes the form

θ (σε) =


(σ̄ε − σε)q for σε ≤ σ̄ε

0 otherwise,
(5)

with parameters q ∈ (0, 1) and σ̄ε > 0. Conditional on q, σ̄ε is easy to identify, but we

could not find a good target for q. To deal with this, we assume that the disruption

cost function is inverse quadratic, i.e. q = 0.5, calibrate σ̄ε, and report the results of

robustness checks in the Appendix. We assume that both the experimentation shock ε

and the exogenous shock u are distributed normally, with mean −σ2
ε/2 and standard

deviation σε for the experimentation shock, and with mean −σ2
u/2 and standard devi-

6In our model, this is the profit share gross of fixed operating costs. Since fixed operating costs are
small in the calibrated version (0.5% of aggregate output), this is close to net profits.

12



ation σu for the exogenous shock. This implies that E(eu) = E(eε) = 1: without the

option to discard results of failed experiments, expected productivity would equal cur-

rent productivity. Finally, z for new firms is distributed normally with mean φ− σ2
n/2

and standard deviation σn. We normalize φ to 1.

We set the remaining six parameters σ̄ε, σn, σu, χ, κf and κe to minimize the distance

to six informative target moments observed in U.S. data. We next suggest which targets

are particularly informative for which parameter.

How much firms choose to experiment depends crucially on the cost parameter σ̄ε.

More success in experimentation implies more firm growth and a more skewed firm size

distribution. The share of employment in the 5% largest firms is therefore informative

about σ̄ε. (We obtain this and other statistics related to the U.S. firm size distribution

from the U.S. Census Bureau’s Statistics of U.S. Businesses (SUSB) for 2004.)7 The

job turnover rate – 22.5% per year in the U.S. according to Haltiwanger, Scarpetta, and

Schweiger (2008) – is highly informative about σu. Importantly, because of the option

to discard failures, experimentation affects job turnover far less than exogenous shocks

do. Therefore, targeting the size distribution and the job turnover rate allows us to

separate exogenous shocks from experimentation.

We obtain information on the parameters driving exit, χ and κf , from the exit rate

of firms (10% per year according to Bartelsman, Haltiwanger, and Scarpetta, 2009)

and the amount of job turnover due to exit, which is about 3% per year (Haltiwanger,

Scarpetta, and Schweiger, 2008). The entry cost κe affects the number of active firms

and thus average firm size, so we also target average firm employment of 20. Finally,

we obtain information about σn from the share of employment in small firms, which

often are young. In the U.S., firms below average size account for 16% of employment.
7Results of course depend to some extent on distributional choices. For instance, modelling the

exogenous shocks as following a distribution with more mass in the upper tail could imply that exper-
imentation is less important. A more skewed distribution for outcomes of experiments may also be an
interesting alternative.
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Table 1: Calibration: Model statistics, calibration targets

Statistic Data Model

calibration targets:

share of employment in
5% largest firms 73.7% 73.6%
firms below average size 16.0% 16.0%

job turnover rate 22.5% 22.6%
job turnover due to exit 3.0% 4.4%
firm exit rate 10.0% 10.2%
average firm size 20 20

not used in calibration:

share of employment in
14% largest firms 84.7% 86.4%
39% largest firms 95.0% 95.7%

fraction of firms below average size 87.0% 88.3%

Table 1 reports the values of the target moments for the data and the model, and Ta-

ble 2 lists the chosen parameters. The calibration fits reasonably well even in dimensions

that were not targeted. In particular, the model fits the distribution of employment

across firms very well: different measures of the share of employment in large firms as

well as the fraction of employment in small firms are very close to their counterparts in

the Census SUSB data. In addition, the model also fits the prevalence of firms below

average size very well. The only target that fits less well is the job turnover rate due

to exit. Given that some sources report numbers for this target of up to 6.3% p.a. (see

e.g. Davis, Faberman, Haltiwanger, Jarmin, and Miranda, 2008, Table 2), the overall

fit is acceptable.

Calibrated parameter values are reasonable: the productivity of entrants features

large dispersion. The variance of exogenous productivity shocks is substantial, but a
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Table 2: Calibration: Parameter values

Parameter Value Parameter Value

σ̄ε 0.124 α 0.6
σu 0.213 γ 0.25
σn 2.125 β 0.96
χ 0.043 δ 0.08
κf 0.101 q 0.5
κe 7.990 φ 1

bit smaller than in papers that only allow for these exogenous shocks such as Luttmer

(2007), Gabler and Licandro (2007) or Poschke (2009), who all find values above 0.3.8

The largest feasible experiment (setting σε = σ̄ε) would involve a standard deviation of

the shock a bit more than half as large as that of the exogenous shock. However, firms

choose to invest significantly less in experimentation, choosing σε of 0.046 on average.

Highly productive firms are the ones experimenting most, choosing σε of 0.055. Overall,

firms invest 3.7% of output in experimentation. In line with our broader interpretation,

this number is somewhat larger than reported R&D investment for the US of about

2.7% of GDP in 2007 (World Bank World Development Indicators).9

Although innovations due to experimentation may appear small, in particular com-

pared to the variance of the exogenous shock, they make a substantial contribution to

productivity: In the calibrated economy, aggregate consumption is 4% larger than in

an otherwise identical economy without experimentation. The asymmetry of shocks

due to experimentation – unsuccessful experiments can be discarded – implies that ex-
8Note that 0.3 is also the annual standard deviation of individual stock returns for firms listed on

NYSE or NASDAQ according to Campbell, Lettau, Malkiel, and Xu (2001). In our model, value is
close to proportional to productivity, so the standard deviation of productivity growth is close to that
of stock returns.

9Recalibrating the model with different values of q for the robustness exercises does not yield very
different values for the choice of σε. The figure for investment in experimentation changes a bit; it is
3.9% of output for q of 0.25 and 3.1% for q of 0.75. Given the broader interpretation of experimentation
compared to R&D, this suggests that q is probably smaller than 0.75.
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perimentation raises aggregate productivity. Also, experimentation has a large impact

on the expected growth rate of output for an individual firm: a firm that sets σε at the

average optimal level of 0.046 expects to grow at a rate of 1.8% due to experimentation.

This compares to a zero expected growth rate for non-experimenting firms (since the

mean of the exogenous disturbance eu is one by construction) and a maximum growth

rate of about 5% when σ ↑ σ̄ε.10

4 Distortions and productivity

Recent work such as Restuccia and Rogerson (2008) or Hsieh and Klenow (2009) has

stressed the importance of distortions for understanding differences in levels of produc-

tivity across countries. In this section, we analyze the impact of a variety of types of

distortions on productivity and output. When productivity is endogenous due to exper-

imentation, distortions affect not only the allocation of resources, but also the evolution

of firm level productivity itself. We pay particular attention to this effect. To do so,

we first analyze aggregate and productivity-dependent distortions, which we model in

a very general way as taxes on output, following Restuccia and Rogerson (2008). Then

we consider firing costs, a policy that makes it more costly to adjust factors.

4.1 Aggregate distortions

First, consider the effect of aggregate distortions. At optimal input choice, profits of a

firm with productivity z and experimentation intensity σε that is subject to an output

tax at rate τ are

Π = (1− τ)
1

1−α−γ (1− α− γ)
( γ
R

) γ
1−α−γ

(α
w

) α
1−α−γ

ezθ(σε).

10Recall though that output goes to zero as σε ↑ σ̄ε since θ (σ̄ε) = 0.
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Denoting the three middle terms by c0, the first order condition for optimal choice of

σε then is

− c0(1− τ)
1

1−α−γ ezθ′(σε) =
1− χ
1 + r

∂Eσε max[V (z + u+ max(ε, 0)), 0]

∂σε
. (6)

If the tax rate is constant, it affects current and future profits in the same way. As

a result, taxes affect the cost of experimentation in terms of reduced current profits

(left-hand side of equation (6)) and the benefits of experimentation in terms of higher

expected future profits (right-hand side of (6)) in the same way. Because of this, a

uniform output tax on all firms does not affect the level of experimentation in our

model economy in a significant way.11 It will however have a negative impact on capital

accumulation, leading to a lower level of output.

4.2 Productivity-dependent distortions

Many taxes are not uniform. Similarly, as pointed out by Guner, Ventura, and Xu

(2008), regulation typically has a size-dependent component. For instance, in many

countries, rules and regulations are enforced more strictly for larger firms. In some

cases, regulations explicitly vary by firm size; a well-known example are stricter firing

restrictions on firms with more than 15 employees in Italy (see e.g. Schivardi and Torrini,

2008). Another example is the “growth tax” in India applied to revenue beyond a certain

level as documented in Little, Mazumdar, and Page (1987).

Work that studies such size-dependent policies typically has analyzed their impact

on incentives to adjust factors, e.g. by discouraging firms from crossing a certain em-

ployment threshold. However, the distortions have a deeper effect that goes beyond

this: they may discourage firms from becoming so productive that it would be desir-
11This is strictly true if taxes do not affect the exit decision. In our model economy, the effect of an

aggregate tax on exit is small, and experimentation hardly changes.
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able to cross the regulation threshold in the first place. Our framework is well-suited to

analyzing this effect. It is clear from equation (6) that higher taxes on more productive

firms discourage experimentation by reducing its benefits.

In this section, we quantify the effect of productivity-related taxes. For simplicity, we

assume that the tax rate depends only on a firm’s current productivity z. In particular,

we assume that taxes increase linearly in productivity ez: τ(z) = τ0+τ1 exp(z). We then

examine the effects of different tax regimes by varying both the progressivity of the tax

rate and the overall tax burden. Because the parameters τ0 and τ1 are hard to interpret,

we define tax regimes in terms of taxes on two types of firms: the firms with productivity

corresponding to the median and the top 0.1 percentile in the benchmark economy.12

Varying only the latter changes the slope τ1 of the tax profile, while changing both rates

by the same amount changes the intercept τ0 but not the slope of the tax profile. We

also assume that any net tax revenue is handed back lump-sum to households.

While productivity-dependent taxes may appear unrealistic (taxes are more likely

to depend on observable characteristics, such as employment), they capture the essence

of size-dependent taxes. In particular, they put the spotlight on the dynamic effect of

taxes on productivity-promoting activities, while abstracting from strategic effects on

input choice.

Table 3 shows the results for a tax rate for the median firm of zero, and maximum

tax rates τmax of 10% and 20%, respectively. To assess the importance of experimenta-

tion, we consider two cases for each maximum tax rate: one where firms choose their

experimentation intensity σε(z) optimally, and one where we restrict firms’ experimen-

tation policy to be the same as in the undistorted benchmark economy. Denote that

policy by σ̃ε(z). In the second case, productivity dependent distortions affect aggregate
12To reduce sensitivity to the long tail of the productivity distribution, we assume that all firms in

the top 0.1 percentile pay the maximum rate.
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Table 3: Productivity-dependent distortions: aggregate outcomes relative to the bench-
mark economy

τmax = 10% τmax = 20%

optimal σε(z) benchmark σ̃ε(z) optimal σε(z) benchmark σ̃ε(z)

Output 0.991 0.992 0.980 0.983
Consumption 0.979 0.995 0.964 0.985
Average firm employment 0.758 0.919 0.703 0.835
Average firm output 0.751 0.911 0.689 0.821
Number of firms 1.320 1.089 1.422 1.198
Average σε 0.904 0.974 0.857 0.957
Firm exit rate 0.965 0.956 0.940 0.929

Notes: Firms are subject to a tax rate that is linear in productivity. The tax rate for the median
firm is zero. τmax is the tax rate on firms with productivity corresponding to the top 0.1 percentile in
the benchmark economy. σ̃ε(z) denotes the experimentation policy that is optimal in the benchmark
economy. Since we assume that any net tax revenue is handed back lump-sum to the households, the
reported values for output and consumption include net tax revenue. Output is reported net of fixed
operating costs. All values are relative to outcomes in the undistorted benchmark equilibrium. For
results with different values of q, see Table 6 in the Appendix.

productivity in two ways: firstly, they affect firms’ input choice and thus the efficiency

of resource allocation for a given productivity distribution, and secondly, they affect

firms’ entry and exit decisions, which contribute to shaping the productivity distribu-

tion. This is as in much of the existing literature on misallocation. When firms choose

experimentation optimally, distortions also affect aggregate outcomes through their ef-

fect on firms’ experimentation decisions. The difference between the columns with the

optimal and the benchmark experimentation policies thus shows the importance of this

new channel.

Results presented in the table show that productivity-dependent distortions lead

to lower output and consumption. This occurs even in the case with the fixed experi-

mentation policy σ̃ε(z), which combines the effect of distortions on resource allocation

analyzed by Restuccia and Rogerson (2008) and their additional effect on the productiv-
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ity distribution via the exit decision. With such distortions, firms with below-median

productivity face a negative tax rate and can thus survive more easily. The conse-

quence is less exit (the exit rate falls by 0.4 to 0.7 percentage points in the different

scenarios) and therefore lower average productivity. Lower average productivity also

tends to reduce average firm size, both in terms of output and employment. Aggregate

output does not fall as much as average output because more firms enter to ensure

labor market clearing – the distorted economy features more, smaller firms.13 This is

also why consumption falls more than output: the distorted economies spend relatively

more resources on firm entry.14 Note that even with a fixed experimentation policy,

distortions lead to small changes in average experimentation because of their impact

on the distribution. Since the “new survivors” don’t experiment, average σε is lower in

the distorted economies.

The effects of productivity-dependent distortions are even larger when firms choose

σε(z) optimally. Increasing tax rates discourage firms from aiming at high productivity,

reduce experimentation, and thereby reduce average productivity and average size even

more. This is very clear in Figure 4.2, which depicts the experimentation policies in the

economies with and without distortions. Distortions strongly discourage firms above

median size, which face positive and increasing tax rates, from experimenting. Their

effect is slightly reduced for the top firms with z > z2 , which face a constant tax rate.
13There are many plausible extensions of the model in which the number of firms would respond

less strongly. One such case arises if the cost of entry increases in the number of firms. Another
possibility is heterogeneity of entrepreneurs. In this case, if the most able entrepreneurs enter first
(as in Lucas, 1978), additional firms present in distorted economies are run by less able entrepreneurs.
Bhattacharya, Guner, and Ventura (2011) focus on this channel in their analysis of the effect of
distortions on aggregate productivity; Poschke (2011) provides a channel through which aggregate
technology differences affect which entrepreneurs are active.

14The effects of distortions here are a bit larger than in Restuccia and Rogerson (2008) even before
the adjustment of σε because of endogenous exit, which implies that distortions do not only imply
resource misallocation, but also worsen the productivity distribution by helping low-productivity firms
to survive. The evolution of idiosyncratic productivity and endogenous exit are also the reasons why
average firm size and the number of firms adjust here, in contrast to Restuccia and Rogerson (2008).
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Figure 2: Optimal experimentation with and wihout productivity dependent distortions
Notes: Firms face distortions in the form of taxes on output given by the schedule τ(z) = τ0 + τ1e

z.
The parameters τ0 and τ1 are such that the tax rate is 0 at z1 and 0.1 at z2. These productivity levels
correspond to the median and the top 0.1 percent firm in the benchmark economy, respectively. The
tax rate to the right of z2 is also 0.1. Model parameters are given in Table 2.

Again, the decline in average productivity is counteracted by an increase in the num-

ber of firms – at a cost of more expenditure on establishing firms. As a consequence,

reduced experimentation does not imply a much larger output response compared to

the case where σε(z) is fixed. Consumption, in contrast, reacts much more strongly,

falling by an additional 1.6 to 2.1 percentage points. The distortion of firms’ experimen-

tation decisions (the difference between optimal and benchmark σε(z)) thus accounts

for between 60-75% of the total reduction in aggregate consumption.

Increasing the maximum tax rate and thus the slope of the tax function τ(z) ampli-

fies the effect of distortions on experimentation. Doubling the slope of the tax function
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Table 4: Varying the overall tax burden: aggregate outcomes relative to the benchmark
economy

τmedian = 10% τmedian = 20%

optimal σε(z) benchmark σ̃ε(z) optimal σε(z) benchmark σ̃ε(z)

Output 0.923 0.924 0.851 0.855
Consumption 0.937 0.952 0.887 0.902
Average employment 0.892 1.081 1.078 1.296
Average output 0.823 0.999 0.918 1.107
Number of firms 0.925 1.121 0.927 0.772
Average σε 0.896 0.972 0.886 0.970
Firm exit rate 0.952 0.961 0.952 0.948

Notes: Firms are subject to a tax rate that is linear in productivity. The tax rate for the median
firm is given in the table. τmax is the tax rate on firms with productivity corresponding to the top 0.1
percentile in the benchmark economy and is τmedian + 0.1. The slope of the tax function thus is the
same in both columns. σ̃ε(z) denotes the experimentation policy that is optimal in the benchmark
economy. Since we assume that any net tax revenue is handed back lump-sum to the households, the
reported values for output and consumption include net tax revenue. Output is reported net of fixed
operating costs. All values are relative to outcomes in the undistorted benchmark equilibrium. For
results with different values of q, see Table 7 in the Appendix.

by raising the maximum tax from 10 to 20 percent implies that experimentation de-

clines another 50%, output another 100% and consumption another 70%. The decrease

in consumption due to experimentation increases from 1.6 to 2.1 percent points.

Table 4 shows the implications of varying the overall tax burden. This is done

by changing the tax rate faced by the median firm, while keeping the slope of the

tax function constant by setting the maximum tax rate 10% above the median rate.

The additional loss in consumption from a 10% increase in the median tax rate ranges

between 4.2 percentage points for an increase from 0 to 10% (results reported in Table

3) and 5 percentage points for an increase from 10% to 20%. As expected, the total

effect of the distortion on consumption through the experimentation channel remains

practically constant throughout: it is 1.6 percentage points when the median tax rate
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is zero, and 1.5 percentage points when it is 10 or 20 percent. Average σε hardly

changes. As indicated by (6), it is thus the slope of the tax function which matters for

experimentation, not the average rate.

Finally, robustness checks shown in Tables 6 and 7 in the Appendix indicate that

results are preserved when the model is recalibrated with different values of q. Optimal

σε is affected more (less) by distortions if q is larger (smaller) and the cost function

less (more) curved. The effect of the distortion through the experimentation channel

thus is larger (smaller) for larger (smaller) q. Still, the effect of productivity dependent

distortion through endogenous productivity is substantial even when q is only 0.25.

4.3 Firing costs

The first source of distortions to be analyzed in a heterogeneous firm model were firing

costs (Hopenhayn and Rogerson, 1993). What is their effect when firms can affect their

productivity through experimentation? To answer this question, we analyze the effect

of introducing firing costs of one year’s wages in our benchmark economy. To focus

only on the distortionary effect of firing costs, we assume that they are redistributed

lump-sum to the representative household.15

As is well known, a firm’s productivity and past employment are both state vari-

ables in this setting since a firm’s past employment determines the cost of adjusting

employment downwards (see e.g. Bentolila and Bertola, 1990). A firm’s optimal hiring

policy exhibits an inaction region. In this region, employment is not adjusted following

small shocks, since this may trigger current or future firing cost payments. Employ-
15The level of firing costs we impose is close to empirically observed values: The 2012 cross-country

average of the amount of severance pay due upon dismissal of a worker with tenure of 5 years is
11 months according to the World Bank’s Doing Business project (www.doingbusiness.org; see also
Botero, Djankov, La Porta, Lopez-De-Silanes, and Shleifer (2004)). In addition, there is a notice period
of on average 5 weeks. The mandated severance payment is larger and the notice period longer for
workers with longer tenure. In addition to these transfers, there often are substantial administrative
costs. All these components contribute to the firing cost incurred by the firm.

23

www.doingbusiness.org


Table 5: Firing costs: aggregate outcomes relative to the benchmark economy

optimal σε(z) benchmark σ̃ε(z)

Output 0.975 0.976
Consumption 0.960 0.965
Average firm employment 1.061 1.116
Average output 1.034 1.089
Number of firms 0.943 0.896
Average σε 1.121 1.042

Notes: Firing costs of a year’s wages. All proceeds are returned lump sum to consumers. Output is
reported net of fixed operating costs. All values are relative to outcomes in the undistorted benchmark
equilibrium.

ment is only adjusted once the benefit from doing so is sufficiently large compared to

the expected penalty. As a consequence, the marginal product of labor is not equalized

across firms, and there is resource misallocation of labor across firms.

This can be seen in the rightmost column in Table 5, which shows the consequences of

introducing firing costs in an economy where firms use the benchmark experimentation

policy. Because of the misallocation of labor they induce, firing costs reduce aggregate

output and consumption. Average experimentation increases slightly because of changes

in the productivity distribution of firms.

Differently from the previous section, aggregates are very similar with optimal ex-

perimentation. The reason for this is that unlike above, firing costs in this setting do

not discourage experimentation, but on average slightly encourage it. Figure 3 shows

the experimentation policy function in the benchmark economy (solid line) and for a

firm of about five times average size in an economy with firing costs (dashed line).

Patterns are qualitatively similar for firms of other sizes. z1 denotes the largest level of

productivity at which the probability of optimally exiting at the end of the period is

99% or more.
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In the benchmark, optimal experimentation first increases with the survival proba-

bility (which raises the expected benefit from experimentation) and then becomes flat.

With firing costs, the policy features two increasing and two flat parts. The difference

to the benchmark is due to the inaction region in the employment policy, which lies

between z2 and z3. These thresholds depend on past employment; they lie further

to the right the larger past employment is. In this region, firms do not change their

employment in response to small changes in productivity. As a consequence, firms in

this region benefit less from small productivity increases and are thus discouraged from

experimenting. This effect becomes weaker as we move closer to the right edge of the

inaction region (z3), where the probability of optimally moving out of that region, and

thus the benefit from experimentation, is larger. Firms to the right (left) of the inaction

region grow (shrink) and experiment at constant rates.

Compared to the benchmark economy, growing firms experiment more when there

are firing costs. Our computations suggest that this occurs because firing costs make the

value function for these firms slightly steeper in z. This happens because productivity

losses are more costly when there are firing costs. As a consequence, firms experiment

more to reduce the risk of costly layoffs. The increase in experimentation negatively

affects aggregate consumption, which falls more with optimal experimentation than

when experimentation is kept fixed at the benchmark policy σ̄ε(z).

Still, the difference is small. The effects of firing costs shown in Table 5 are also

somewhat smaller than those previously obtained in the literature (e.g. Hopenhayn and

Rogerson, 1993). These differences can be attributed to some particular conservative

modelling choices that tend to reduce the effect of firing costs. For instance, apart from

experimentation, the present model differs from the one in Hopenhayn and Rogerson

(1993) in three key respects: firms use both capital and labor in production; labor

supply is inelastic; and z is not mean reverting. The presence of capital softens the
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Figure 3: Optimal experimentation with and without firing costs
Notes: Without firing costs, optimal experimentation depends only on z. With firing costs, it also
depends on past employment, which is denoted by n̄ and here is fixed at a level of about 5 times average
employment. z1 marks the largest level of z at which the probability of choosing to exit at the end of
the period exceeds 99%. z2 and z3 mark the left and right edge of the inaction region for employment
conditional on past employment being n̄. Raising (reducing) n̄ shifts z2, z3 and the increasing part of
the experimentation policy to the right (left). Parameters as in Table 2.

blow from firing costs because firms can adjust capital use to partially compensate

for reduced adjustment of the labor input. The absence of labor supply reactions to

lower wages implied by firing costs further reduces their aggregate consequences. Most

importantly for our setting, firing costs would discourage experimentation much more if

experimentation outcomes decayed over time, or if z mean reverted. If this was the case,

firms would be more reluctant to adjust employment after a successful experiment, as

this would involve higher expected future firing costs than with fully persistent z. Since
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the ability to adjust factors substantially enhances the benefits of successful experiments

(the elasticity of firm output with respect to z alone is only 15% in our calibration),

firing costs would have much more deleterious effects on experimentation in such a

setting.

The results on firing costs illustrate that not all types of distortions reduce experi-

mentation. They thus highlight again the particularly negative effect of productivity-

related distortions. Ignoring their effect on firms’ productivity-promoting activities may

result in significant understatements of the damage they cause.

5 Conclusion

We have proposed a model of experimentation by firms, which provides a simple micro-

foundation to part of the stochastic process for firm-level productivity typically specified

in the macroeconomic literature with firm heterogeneity. The implied process for firm-

level productivity is theoretically appealing: successful experiments lead to a permanent

increase in productivity, while unsuccessful ones can be reversed. Integrated within a

realistic framework of firm dynamics with endogenous entry and exit, the calibrated

version of our model replicates a number of moments of the U.S. firm size distribution.

We use this model to quantify the effect of distortions of allocative efficiency in the

context of such a partially endogenous productivity process. We find that productivity

dependent distortions strongly affect aggregate outcomes. For instance, a distortion

that increases in productivity and, while not taxing the median firm, implies a 10% tax

rate for the most productive firms implies a 2.1% reduction in aggregate consumption.

More than half of this decline is due to reduced experimentation: Taxes that increase

in productivity discourage firms from investing in productivity-enhancing activities. As

a consequence, distortions do not just cause misallocation of resources across firms of
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different productivity, but may affect the location of the productivity distribution itself.

We also examine the impact of firing costs. While these substantially reduce aggregate

output and consumption by inducing misallocation, their effect on experimentation is

more limited.

Endogenous productivity thus amplifies the effect of some, but not all distortions.

We show this for productivity-dependent distortions – a very stylized way of mod-

elling the heterogeneous incidence of distortions. Analyzing concrete size-dependent

distortions (like size thresholds in regulations) may lead to more precise estimates but

most likely would not change the basic thrust of our results. Future research on the

role of endogenous productivity should, however, also consider the effects of a type of

distortion that may have a particularly devastating effect in our setting: distortions

that limit firms’ flexibility and make it more difficult or costly for firms to undo failed

experiments.

Similarly, there are three aspects related to modelling experimentation where further

research could allow us to learn more about experimentation as well as to evaluate the

effect of distortions more precisely. Firstly, we have assumed that failed experiments

are instantaneously and fully reversible. Clearly, this is an extreme assumption that

merits being relaxed. However, quantifying barriers to the reversibility of experiments is

hard without more informative data. Therefore, secondly, it appears promising to bring

to bear more empirical evidence on experimentation. The clearest existing empirical

evidence on experimentation concerns the turnover of products (Bernard, Redding, and

Schott, 2010). A full investigation should however also consider process innovation, on

which there is less information, but which could be very different in terms of both

costs and reversibility. Thirdly, both reversibility and other model features, like the

variance of exogenous shocks or fixed costs, may well vary across industries. These

differences would in turn imply differences in experimentation. Evidence on differences
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in productivity dynamics and size distributions across industries as documented by

Rossi-Hansberg and Wright (2007) and Castro, Clementi, and Lee (2009) could thus

also provide further insights into experimentation and into the costs of distortions across

industries. We leave these issues for future research.
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A Additional Tables and Figures

Table 6: Productivity dependent distortions: aggregate outcomes relative to the bench-
mark economy – robustness to changes in q

τmax = 10% τmax = 20%

optimal σε(z) benchmark σ̃ε(z) optimal σε(z) benchmark σ̃ε(z)

q = 0.25

Output 0.994 0.991 0.980 0.983
Consumption 0.989 0.995 0.970 0.984
Average employment 0.820 0.915 0.746 0.834
Average output 0.815 0.907 0.731 0.820
Number of firms 1.220 1.092 1.340 1.198
Average σε 0.968 0.984 0.953 0.975
Firm exit rate 0.960 0.952 0.934 0.930

q = 0.75

Output 0.992 0.991 0.981 0.983
Consumption 0.978 0.994 0.965 0.984
Average employment 0.747 0.927 0.698 0.833
Average output 0.741 0.919 0.684 0.819
Number of firms 1.339 1.079 1.434 1.200
Average σε 0.846 0.982 0.786 0.964
Firm exit rate 0.974 0.963 0.949 0.927

Notes: Firms are subject to a tax rate that is linear in productivity. The tax rate for the median
firm is zero. τmax is the tax rate on firms with productivity corresponding to the top 0.1 percentile in
the benchmark economy. σ̃ε(z) denotes the experimentation policy that is optimal in the benchmark
economy. Since we assume that any net tax revenue is handed back lump-sum to the households,
the reported values for output and consumption include net tax revenue. Output is reported net of
fixed operating costs. All values are relative to outcomes in the undistorted benchmark equilibrium.
Parameters are as in Table 2, except for σ̄ε, which is 0.09 when q is 0.25 and 0.1575 when q is 0.75.
For results with q = 0.5, see Table 3 in Section 4.2.
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Table 7: Varying the overall tax burden: aggregate outcomes relative to the benchmark
economy – robustness to changes in q

τmedian = 10% τmedian = 20%

optimal σε(z) benchmark σ̃ε(z) optimal σε(z) benchmark σ̃ε(z)

q = 0.25

Output 0.926 0.924 0.855 0.854
Consumption 0.946 0.952 0.896 0.901
Average employment 0.965 1.081 1.147 1.304
Average output 0.894 0.999 0.981 1.113
Number of firms 1.036 0.925 0.872 0.767
Average σε 0.967 0.984 0.962 0.984
Firm exit rate 0.959 0.952 0.948 0.952

q = 0.75

Output 0.924 0.924 0.854 0.854
Consumption 0.937 0.951 0.889 0.902
Average employment 0.873 1.082 1.054 1.302
Average output 0.807 1.000 0.900 1.112
Number of firms 1.145 0.924 0.949 0.768
Average σε 0.833 0.976 0.824 0.976
Firm exit rate 0.962 0.951 0.962 0.951

Notes: Firms are subject to a tax rate that is linear in productivity. The tax rate for the median
firm is given in the table. τmax is the tax rate on firms with productivity corresponding to the top 0.1
percentile in the benchmark economy and is τmedian + 0.1. The slope of the tax function thus is the
same in both columns. σ̃ε(z) denotes the experimentation policy that is optimal in the benchmark
economy. Since we assume that any net tax revenue is handed back lump-sum to the households,
the reported values for output and consumption include net tax revenue. Output is reported net of
fixed operating costs. All values are relative to outcomes in the undistorted benchmark equilibrium.
Parameters are as in Table 2 except for σ̄ε, which is 0.09 when q is 0.25 and 0.1575 when q is 0.75.
For results with q = 0.5, see Table 4 in Section 4.2.
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