# Accounting for the determinants of wealth concentration in the US

Barış Kaymak <sup>1</sup> David Leung <sup>2</sup> Markus Poschke <sup>3</sup>

<sup>1</sup>Université de Montréal and CIREQ

<sup>2</sup>National Taiwan University

<sup>3</sup>McGill University and CIREO

Barcelona GSE Research Webinar Income Dynamics and the Family, June 19, 2020

#### Wealth is highly concentrated

|           | Top 1% share | Top 0.1% share | Gini |
|-----------|--------------|----------------|------|
| earnings  | 0.19         | 0.06           | 0.58 |
| income    | 0.23         | 0.08           | 0.67 |
| net worth | 0.37         | 0.14           | 0.85 |

- Wealth is highly concentrated, much more so than earnings and income.
- Its concentration has increased over the last few decades.

#### What determines wealth concentration?

#### Channels proposed by the literature:

- Earnings concentration (Castañeda, Díaz-Gimenez and Ríos-Rull 2003, Kindermann and Krueger 2016, Kaymak and Poschke 2016)
- Heterogeneity in return to saving (Quadrini 2000, Cagetti and de Nardi 2006, Benhabib, Bisin and Zhu 2011) or patience (Krusell and Smith 1998, Hendricks 2007)
- Bequests (de Nardi 2004)

#### **Our contribution**

Use statistics describing the **joint distribution of income**, **earnings and wealth** to measure the relative contribution of each channel.

Intuition:

- If earnings concentration channel dominates, top income earners should have significant labor income.
- If return heterogeneity channel dominates, top income earners should have mostly capital income.

#### **Our contribution**

Use statistics describing the **joint distribution of income**, **earnings and wealth** to measure the relative contribution of each channel.

#### Steps:

- Carefully measure the labor income share of top income and wealth groups.
- 2. Calibrate a heterogeneous-agent, life-cycle model with incomplete markets and all three potential determinants of wealth concentration using this information.
- 3. Measure importance of different channels.
- 4. Illustrate identification: Show implications of different parameterizations for the joint distribution.

#### **Key Results**

#### Data:

- 1. Substantial correlation between earnings and wealth.
- 2. Labor income share sigificant even at the top of the income and wealth distributions.

#### Quantitative analysis:

- 1. Earnings concentration is the main driver of wealth concentration.
- 2. Modest contribution from bequests and return heterogeneity.
- 3. Scenarios with larger role for return heterogeneity generate strongly counterfactual joint distributions and earnings distributions.

#### This talk

- 1. Data
- 2. Model
- 3. Benchmark economy
  - calibration
  - o joint distributions
  - o life cycle patterns
- 4. Counterfactuals
  - Decomposition starting from benchmark economy
  - Alternative parameterizations

Data

### Data

#### Data source

#### Survey of Consumer Finances 2010 - 2016

Net worth: broad coverage of financial plus non-financial assets, minus debt

#### Market Income:

- + wage and salary income (L)
- + business and farm income (K+L)
- + interest and dividend income, private pension withdrawals (K)
- ± capital gains (K)
- e.g. social security income, transfer income etc.

#### **Data source**

#### Survey of Consumer Finances 2010 - 2016

#### Market Income:

- + wage and salary income (L)
- + business and farm income (K+L)
- + interest and dividend income, private pension withdrawals (K)
- ± capital gains (K)
- e.g. social security income, transfer income etc.

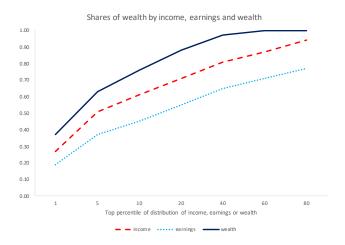
#### Challenges:

- Capital gains
  - o Solution: Report both with and w/o capital gains and calibrate to average.
- Important role of business income, in particular at the top
  - Solution: impute wage income to households who report positive business income from active businesses, but no wages.
  - Key empirical patterns similar with other ways of splitting bus. income

#### The Joint Distribution of Wealth, Income and Earnings

- 1. Correlations of wealth with income and earnings
- 2. Wealth shares of top income and earnings groups
- 3. Labor income shares at the top of the income and wealth distributions

#### The Joint Distribution of Wealth, Income and Earnings


#### Correlation of wealth with...

| age group | all  | 21-64 |
|-----------|------|-------|
| income    | 0.52 | 0.52  |
| earnings  | 0.30 | 0.35  |

Source.—Survey of Consumer Finances, 2010 and 2016. All households. Income includes capital gains. Figures excluding capital gains are similar.

marginal distributions

### The Joint Distribution of Wealth, Income and Earnings



Top earners are wealthy.

#### **Top 1% Labor Income Share: SCF and IRS**

|        | wages only |        | wages + some bus. in |        |
|--------|------------|--------|----------------------|--------|
| Source | w KG       | w/o KG | w KG                 | w/o KG |
| SCF    | 0.49       | 0.56   | 0.59                 | 0.68   |
| IRS    | 0.49       | 0.56   | _                    | _      |

- Earnings is the major source of income for the top 1% in SCF.
- IRS agrees: wage income is the major source except for the top 0.1% or smaller (Piketty and Saez, 2006)
- Earnings account for 55% of income even for the top 1% of wealth.



#### **Data: key patterns**

- 1. Substantial correlation between earnings and wealth.
- 2. Top earners are wealthy.
- 3. Labor income main source of income except for top 0.1%.
- 4. Labor income share of top 1% significant:
  - o 64% for top 1% of income
  - o 55% for top 1% of wealth

Model

### Model

#### Model

Extend a standard incomplete market life cycle model (Imrohoroglu et al. 1995, Huggett 1996) to incorporate

- ... idiosyncratic labor income risk à la Castañeda et al. (2003)
- ... capital income risk à la Benhabib et al.
- ... non-homothetic bequests

Model is consistent with the observed wealth concentration.

Use the model to ask which feature is the main channel to generate the level of wealth concentration as we seen in the data.

#### Households

Differ in: age j, wealth k, productivity z, saving return  $\kappa$ .

- live from age 20 to 100 (max), 5-year periods
- retire at age 65
- age-dependent survival probability
- value consumption and bequests, dislike working
- decide every period how much to consume, work, and save
- productivity as workers depends on age and productivity state z (Markov process)
- return to saving  $\kappa$  follows a Markov process

#### Risks, saving motives, and wealth inequality

#### **Saving motives:**

- retirement
- bequest
- precautionary
- return to saving

#### **Determinants of wealth inequality:**

- heterogeneous bequests
- heterogeneous rate of returns
- heterogeneous saving motives by productivity

#### Worker's Problem

$$V_{j}^{W}(k, z, \kappa) = \max_{c, k' \ge 0, h \in [0, 1]} \left\{ \frac{c^{1 - \sigma_{c}}}{1 - \sigma_{c}} - \theta \frac{h^{1 + \sigma_{l}}}{1 + \sigma_{l}} + \beta s_{j} \mathbb{E}[V_{j+1}^{W}(k', z', \kappa') | z, \kappa] + (1 - s_{j})\phi(k') \right\}$$

subject to

$$(1 + \tau_s)c + k' = y^d(z\varepsilon_j hw, r\kappa k) + k + Tr,$$
  

$$\phi(k) = \phi_1 \left[ (k + \phi_2)^{1 - \sigma_c} - 1 \right]$$
  

$$j < J_R - 1$$

#### Retirees $(j \geq J_R)$ :

- receive social security benefits b instead of labor earnings  $zw\varepsilon_i h$ 

Calibration

### Calibration

#### **Calibration strategy**

Parameters are set to make the model consistent with a set of observations:

- Preset standard parameters
- Calibrate tax parameters to observed tax rates and revenue (top groups + average)
- Calibrate earnings process to data on
  - o earnings distribution and dynamics
  - income composition (top groups)
- Calibrate return process to data on
  - wealth concentration (top groups)
  - o intergenerational persistence of top wealth status
- Calibrate bequest parameters and process to
  - bequest distribution (bequest/wealth ratio and top bequest share)
  - o intergenerational wealth correlation

#### Taxes, social security, government spending

#### Social security:

- piecewise linear as in the law
- caps on contributions and on benefits
- total social security and medicare spending as in national accounts

#### Government spending as in national accounts.

#### Taxes:

- linear taxes on corporate income  $(\tau_c)$
- progressive taxes on household income  $(\tau_l, \tau_{\text{max}})$
- average taxes endogenous, so that the government budget is balanced.



#### **Labor Productivity Process**

Labor earnings are  $z\varepsilon_i hw$ .

Dynamics of productivity z:

$$\Pi_{Z} = \begin{pmatrix} & |f_{L} + a| & |f_{H} + a| & |z_{awel}| & |z_{aweh}| \\ \hline f_{L} + a| & |A| & |0| & |\lambda_{in}| & |0| \\ f_{H} + a| & |0| & |A| & |\lambda_{in}| & |0| \\ |z_{awe_{l}}| & |\lambda_{out}| & |\lambda_{out}| & |\lambda_{ll}| & |\lambda_{lh}| \\ |z_{awe_{h}}| & |0| & |0| & |\lambda_{hl}| & |\lambda_{hh}| \end{pmatrix}$$

PSID provides panel data on non-top groups to estimate...

"regular" earnings dynamics

PSID does not cover the top very well; so calibrate "awesome" earnings states and the transitional probability using data on

- top earnings shares
- income composition of top incomes and
- persistence of top earnings.
   Kaymak Leung Poschke (2020)

### **Capital Income Process**

#### Capital income is $r \kappa k$ .

- r is determined in equilibrium.
- −  $\kappa$  ∈ { $\kappa_L$ ,  $\kappa_H$ ,  $\kappa_{top}$ } follows a Markov process.
- $-\kappa$  and z are independent.

$$\Pi_{\kappa} = \begin{pmatrix} \kappa_L & \kappa_H & \kappa_{\text{top}} \\ \hline \kappa_L & \pi_{ll} & 1 - \pi_{ll} - \pi_{in} & \pi_{in} \\ \kappa_H & 1 - \pi_{hh} - \pi_{in} & \pi_{hh} & \pi_{in} \\ \kappa_{\text{top}} & 0 & 1 - \pi_{top,top} & \pi_{top,top} \end{pmatrix}$$

#### Calibrate return levels and persistence to match data on

- top wealth shares
- intergenerational persistence of top wealth status

#### **Bequests**

Households leave a bequest if they die, and value doing so at

$$\phi(k) = \phi_1[(k + \phi_2)^{1 - \sigma_c} - 1].$$

 $\phi_1$  controls overall strength of the bequest motive.

 $\phi_2 > 0$  implies that bequests are a luxury good.

Households receive a bequest at age 50 (mean age receiving bequest).

- The bequest is randomly drawn from a mixture of distributions of bequests left by those dying with (high / low) (fixed effect / return).
- Weights determined by intergenerational earnings correlation and intergenerational correlation of wealth.

#### **Non-targeted moments**

- joint distribution of income, earnings and wealth (except top labor income shares)
- mean of earnings, income and wealth over the life cycle
- inequality of earnings, income and wealth by age group
- age composition of top wealth groups

preset parameters

### Model fit: Marginal distributions of wealth, earnings and income





Calibration Model fit

### **Model fit: Income composition**

#### Share of income from labor:

|       | All<br>0-100 | 99-100 | Top(%)<br>95-99 | 90-95 |
|-------|--------------|--------|-----------------|-------|
| Data  | 0.82         | 0.64   | 0.78            | 0.88  |
| Model | 0.79         | 0.64   | 0.81            | 0.78  |

#### **Parameters: Top earnings levels and transitions**

#### *Top productivity groups:*

|                       | <i>Z</i> <sub>7</sub> | $z_8$ |
|-----------------------|-----------------------|-------|
| $z_i$ /mean regular z | 37.5                  | 266   |
| share of population   | 0.63%                 | 0.02% |

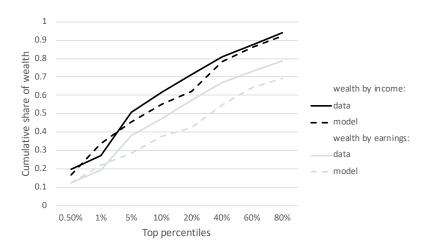
#### *Top relative to mean earnings:*

|       | 0.01% | 0.1% | 0.5% | 1% |
|-------|-------|------|------|----|
| data  | >170  | 60   | 28   | 19 |
| model | 204   | 60   | 33   | 20 |

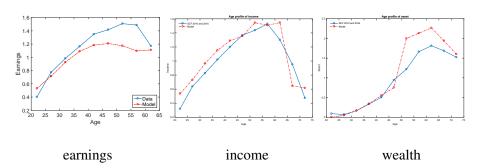
#### Top earning dynamics:

|       | Prob. stay in top 1% |
|-------|----------------------|
| data  | 0.62                 |
| model | 0.60                 |

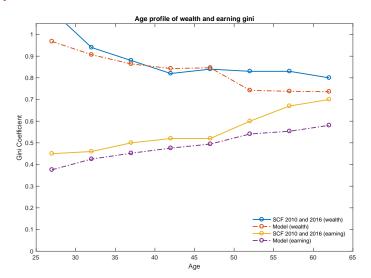
### The rate of return process


#### Transition matrix (probabilities in %):

|               | $r\kappa_L$ 1% | $r\kappa_H$ 6% | $r\kappa_{\mathrm{top}} \ 24\%$ |
|---------------|----------------|----------------|---------------------------------|
| 1%            | 99             | 0.975          | 0.025                           |
| 6%            | 0.975          | 99             | 0.025                           |
| 24%           | 0              | 10             | 90                              |
| pop. fraction | 49.2           | 50.5           | 0.25                            |


### Non-targeted moments: Joint distributions

|       | Correlation of we | LIS of top |              |
|-------|-------------------|------------|--------------|
|       | earnings (21-64)  | income     | 1% of wealth |
| Data  | 0.35              | 0.52       | 0.55         |
| Model | 0.27              | 0.63       | 0.48         |


### Non-targeted moments: Joint Distribution of Wealth by Income and Earnings



### Additional moments: Earnings, Income and Wealth over the Life-Cycle



### Additional moments: Earnings and wealth inequality over the Life-Cycle



Decomposition

## Decomposition:

The Sources of Wealth Inequality

## **Counterfactuals: The Sources of Wealth Inequality**

- In data, all channels present.
- Cannot see their individual contributions directly.
- ⇒ Use model to simulate counterfactual economies.

### Three approaches:

- 1. Starting from benchmark economy, eliminate individual channels
- 2. Investigate paths of wealth accumulation
- 3. Alternative calibrations:
  - Find different top earnings/top return combinations generating top 0.1% wealth share of 14%.
  - Then evaluate fit of other dimensions.

# **Counterfactuals: Eliminating individual channels**

|                | wealth | top wealth |      | top earnings |      | top 1% |
|----------------|--------|------------|------|--------------|------|--------|
|                | Gini   | 0.1%       | 1%   | 0.1%         | 1%   | LIS    |
| data           | 0.85   | 0.14       | 0.37 | 0.06         | 0.19 | 0.64   |
| benchmark      | 0.83   | 0.14       | 0.38 | 0.06         | 0.18 | 0.63   |
| no top earners | 0.74   | 0.07       | 0.16 | 0.004        | 0.04 | 0.47   |
| common return  | 0.79   | 0.11       | 0.34 | 0.06         | 0.18 | 0.72   |
| equal bequests | 0.73   | 0.11       | 0.30 | 0.06         | 0.19 | 0.69   |

- Eliminating top earners reduces top wealth shares by half or more
  - Also too low top earnings and top LIS
- Eliminating heterogeneous returns or imposing equal bequests reduces top wealth shares moderately.



# **Counterfactuals: Eliminating individual channels**

|                | wealth | top wealth |      | top earnings |      | top 1% |
|----------------|--------|------------|------|--------------|------|--------|
|                | Gini   | 0.1%       | 1%   | 0.1%         | 1%   | LIS    |
| data           | 0.85   | 0.14       | 0.37 | 0.06         | 0.19 | 0.64   |
| benchmark      | 0.83   | 0.14       | 0.38 | 0.06         | 0.18 | 0.63   |
| no top earners | 0.74   | 0.07       | 0.16 | 0.004        | 0.04 | 0.47   |
| common return  | 0.79   | 0.11       | 0.34 | 0.06         | 0.18 | 0.72   |
| equal bequests | 0.73   | 0.11       | 0.30 | 0.06         | 0.19 | 0.69   |

- Eliminating top earners reduces top wealth shares by half or more.
  - Also too low top earnings and top LIS.
- Eliminating heterogeneous returns or imposing equal bequests reduces top wealth shares moderately.



# Why do heterogeneous returns have little impact?

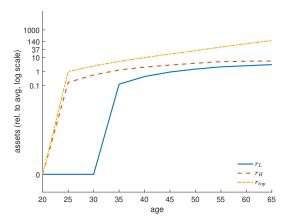



Figure: Path of assets if z always  $z_6$ , return fixed

## Why do heterogeneous returns have little impact?

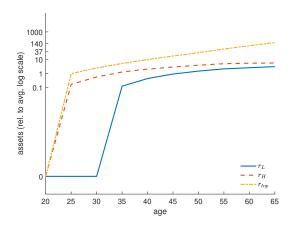



Figure: Path of assets if z always  $z_6$ , return fixed

Answer: because life is too short.

Reaching the top 0.1% takes 40 years at the top return of 24%.

## High returns have an impact when applied to a larger base

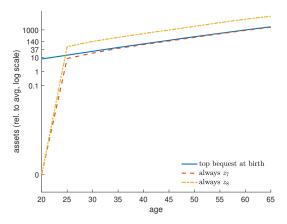
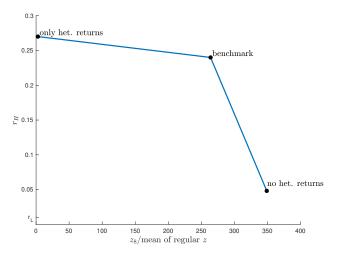




Figure: Path of assets for fixed return, large bequest when young or always top z

# Alternative calibrations generating top 0.1% wealth share of 14%



# Alternative calibrations: implications for the joint distribution

|                             | Top 1% earnings | labor income share of top 1% by |              | correlat<br>wealth |              |
|-----------------------------|-----------------|---------------------------------|--------------|--------------------|--------------|
|                             |                 | income                          | wealth       | earnings (21-64)   | income       |
| data                        | 0.19            | 0.64                            | 0.55         | 0.35               | 0.52         |
| benchmark only het. returns | 0.18<br>0.04    | 0.63<br>0.31                    | 0.48<br>0.07 | 0.20<br>0.01       | 0.65<br>0.67 |

#### Conclusion

- Model can replicate US income and wealth distribution very well, including
  - o joint distribution of income and wealth
  - o top income composition

and life cycle dynamics of earnings, income and wealth

- o levels and
- o inequality.
- Realistically high level of earnings concentration main driver of high wealth concentration in US.
- Rate of return heterogeneity makes a limited contribution over the finite horizon of one human life.
- Models that only rely on rate of return heterogeneity cannot match the high levels of earnings at the top of the income and wealth distributions.

Conclusion

Thank you!

Appendix

# Appendix

#### **Data and Definitions**

- Survey of Consumer Finances 2010 2016
- Market Income
  - + wage and salary income (L)
  - + business and farm income (K+L)
  - + interest and dividend income (K)
  - + private pension withdrawals (K)
  - ± capital gains (K)
  - e.g. social security income, transfer income etc.
- Business Income: K or L?
  - o solution: If no wage is reported for active business, we impute it.
- Capital gains
  - solution: Report both with and without capital gains and calibrate the average.



# **Cross-Sectional Distributions of Income, Earnings and Wealth**

|                | Top Percentile |      |      |      |      |      |      |                  |
|----------------|----------------|------|------|------|------|------|------|------------------|
|                | 0.1%           | 0.5% | 1%   | 5%   | 10%  | 20%  | 40%  | Gini             |
| Wealth share   | 0.14           | 0.28 | 0.37 | 0.63 | 0.76 | 0.88 | 0.97 | 0.85             |
| Income share   | 0.08           | 0.18 | 0.23 | 0.41 | 0.53 | 0.68 | 0.86 | 0.67             |
| Earnings share | 0.06           | 0.14 | 0.19 | 0.36 | 0.49 | 0.66 | 0.86 | $0.66^{\dagger}$ |

Source.—Survey of Consumer Finances, 2010 and 2016. All households. Cumulative shares. Income includes capital gains. Patterns are similar when excluding capital gains.



<sup>&</sup>lt;sup>†</sup>The earnings gini for working age households is 0.58.

# The Joint Distribution of Wealth, Income and Earnings

Shares of Net Worth by Income and Earnings:

|                           | Top Percentile |      |      |      |      |      |
|---------------------------|----------------|------|------|------|------|------|
| sorted by                 | 0.5%           | 1%   | 5%   | 10%  | 20%  | 40%  |
| net worth income earnings | 0.20           | 0.27 | 0.51 | 0.61 | 0.71 | 0.81 |

Source.—Survey of Consumer Finances, 2010 and 2016. All households. Income includes capital gains. Figures excluding capital gains are similar.

# **Cross-Sectional Distributions of Income, Earnings and Wealth**

|                       |      | Top Percentile |      |      |      |      |      |                  |
|-----------------------|------|----------------|------|------|------|------|------|------------------|
|                       | 0.1% | 0.5%           | 1%   | 5%   | 10%  | 20%  | 40%  | Gini             |
| Wealth share          | 0.14 | 0.28           | 0.37 | 0.63 | 0.76 | 0.88 | 0.97 | 0.85             |
| Income share (w KG)   | 0.08 | 0.18           | 0.23 | 0.41 | 0.53 | 0.68 | 0.86 | 0.67             |
| Income share (w/o KG) | 0.07 | 0.16           | 0.21 | 0.39 | 0.51 | 0.67 | 0.86 | 0.66             |
| Earnings share        | 0.06 | 0.14           | 0.19 | 0.36 | 0.49 | 0.66 | 0.86 | $0.66^{\dagger}$ |

Source. – Survey of Consumer Finances, 2010 and 2016. All households. Cumulative shares.



<sup>&</sup>lt;sup>†</sup> The earnings gini for working age households is 0.58.

#### The share of income from labor

Income = Wage income + Business income + Interest, dividends(+capital gains)

| Labor income          | Capital income |       |          |        |  |  |
|-----------------------|----------------|-------|----------|--------|--|--|
|                       | All            | Top 1 | Income ( | Groups |  |  |
| Percentile            | 0-100          | 90-95 | 95-99    | 99-100 |  |  |
| Wage income           |                |       |          |        |  |  |
| with capital gains    | 74             | 83    | 69       | 49     |  |  |
| without capital gains | 78             | 84    | 73       | 56     |  |  |
| Labor Income          |                |       |          |        |  |  |
| with capital gains    | 80             | 87    | 76       | 59     |  |  |
| without capital gains | 84             | 89    | 80       | 68     |  |  |

- Labor income is the major income source for the top 1% in the SCF.
- It accounts for 55% of income even in the top 1% of wealth.

#### The share of income from labor – top fractiles from IRS data

| Income Percentile Category |         |           |            |           |  |  |  |  |
|----------------------------|---------|-----------|------------|-----------|--|--|--|--|
| 99-100                     | 99-99.5 | 99.5-99.9 | 99.9-99.99 | 99.99-100 |  |  |  |  |

| w/o capital gain  | s: |    |    |    |    |
|-------------------|----|----|----|----|----|
| Wage              | 56 | 73 | 61 | 47 | 34 |
| Business          | 30 | 20 | 29 | 37 | 37 |
| Int. + Div.       | 14 | 7  | 10 | 15 | 29 |
| w/ capital gains. | :  |    |    |    |    |
| Wage              | 49 | 68 | 54 | 40 | 27 |
| Business          | 27 | 19 | 26 | 32 | 30 |
| Int., Div., KG    | 24 | 13 | 19 | 28 | 42 |

Source. – 2015 update to Piketty and Saez (2007), averages for 2010-2015.

- Labor income is the major income source for the top 1% in the SCF.
- IRS agrees: wage income is the main source except for the top 0.1%.

# **Stationary Equilibrium**

Let  $s = \{j, k, z, \kappa\} \in S$  be the state vector.

- 1. Functions V(s), c(s), k'(s) and h(s) solve the households' problem.
- 2. Firms maximize profits.
- 3. Factor markets clear:

$$K = \int k'(s) d\Gamma(s)$$
 and  $N = \int_{j < J_r} z \varepsilon_j h(s) d\Gamma(s)$ 

4. The government's budget is balanced:

$$G + Tr + \int b(s) d\Gamma(s) = \tau_s \int c(s) d\Gamma(s) + \int [y(s) - y^d(s)] d\Gamma(s)$$

5.  $\Gamma(s)$  is consistent with the policy functions, and is stationary.



# Tax System and Disposable Income $y^d$

$$y^{d} = \lambda \min\{y_{f}, y_{b}\}^{1-\tau_{l}} + (1 - \tau_{max}) \max\{0, y_{f} - y_{b}\} + (1 - \tau_{c}) \max(r\kappa k - d_{c}, 0)$$

- Taxable household income:  $y_f = wz\varepsilon_j h + \min(r\kappa k, d_c) + b(j, z)$
- Taxation of household income: progressive up to y<sub>b</sub>, constant MTR above

$$\lambda \min\{y_f, y_b\}^{1-\tau_l} + (1-\tau_{max}) \max\{0, y_f - y_b\}$$

- $0 \le \tau_l \le 1$  measures the degree of progressivity of the tax system.
- o Permits net transfers (e.g. Welfare-to-work (Workfare) and EITC)
- Taxation of Corporate Income:

$$(1-\tau_c)\max(r\kappa k - d_c, 0)$$

- Social Security: piecewise linear as in the law



#### **Calibration of the Model: Preset Parameters**

| Parameter       | Description                 | Value                  |  |  |  |  |  |  |  |
|-----------------|-----------------------------|------------------------|--|--|--|--|--|--|--|
|                 | Demographics                |                        |  |  |  |  |  |  |  |
| J               | Maximum life span           | 16                     |  |  |  |  |  |  |  |
| $j_R$           | Mandatory retirement age    | 10                     |  |  |  |  |  |  |  |
| $s_0, s_1, s_2$ | Survival probability by age | Halliday (2015)        |  |  |  |  |  |  |  |
|                 | Production                  |                        |  |  |  |  |  |  |  |
| $\alpha$        | Share of capital            | 0.27                   |  |  |  |  |  |  |  |
| $\delta$        | Depreciation                | 4.5%                   |  |  |  |  |  |  |  |
|                 | Preferences                 |                        |  |  |  |  |  |  |  |
| $\sigma_c$      | Risk aversion               | 1.5                    |  |  |  |  |  |  |  |
| $\sigma_l$      | Inverse frisch elasticity   | 1.22                   |  |  |  |  |  |  |  |
|                 | •                           | (Blundell et al. 2016) |  |  |  |  |  |  |  |



### **Calibration of the Model: Preset Parameters**

| Parameter                                             | Description                               | Value        | Source                        |  |  |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------|--------------|-------------------------------|--|--|--|--|--|--|
|                                                       | Labor Productivity                        |              |                               |  |  |  |  |  |  |
| $ \{\varepsilon_j\}_{j=1}^{j_R-1} $ $ \{z_1,, z_6\} $ | Age-efficiency profile                    | own estimate |                               |  |  |  |  |  |  |
| $\{z_1,, z_6\}$                                       | Ordinary productivity states              | own estimate |                               |  |  |  |  |  |  |
| $A_{ij}$                                              | Transition rates of ordinary productivity |              | own estimate                  |  |  |  |  |  |  |
|                                                       | Taxes and Transfers                       |              |                               |  |  |  |  |  |  |
| $	au_c$                                               | Marginal corporate tax rate               | 0.236        | Gravelle (2014)               |  |  |  |  |  |  |
| $	au_{\scriptscriptstyle S}$                          | Consumption tax rate                      | 0.05         | Kindermann and Krueger (2016) |  |  |  |  |  |  |
| Tr                                                    | Government transfers / GDP                | 0.027        | NIPA                          |  |  |  |  |  |  |
| G/Y                                                   | Expenditures / GDP                        | 0.155        | NIPA                          |  |  |  |  |  |  |

# **Calibration of the Model: Jointly Calibrated Parameters**

| Parameter                                                        | Description                           | Value       |
|------------------------------------------------------------------|---------------------------------------|-------------|
| $\beta$                                                          | Discount rate                         | 0.979       |
| $	heta \ \lambda_{in}, \lambda_{ll}, \lambda_{lh}, \lambda_{hh}$ | Labor disutility Transition rates     | 5.5         |
| z <sub>7</sub> , z <sub>8</sub>                                  | Top productivity states               |             |
| $R_{LL}, R_{HH}, R_{\text{top,top}}$                             | Return transition rates               |             |
| $\kappa_L, \kappa_H, \kappa_{top}$                               | Rate of return multipliers            |             |
| $\phi_1,\phi_2$                                                  | Bequest utility                       | -0.42, 0.19 |
| $	au_l$                                                          | Tax progressivity                     | 18%         |
| $d_c$                                                            | Corporate asset threshold/mean assets | 0.79        |

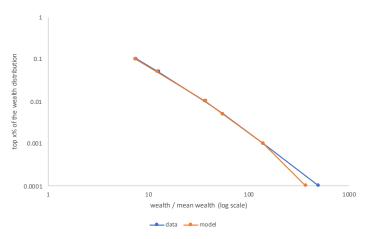
#### **Calibration of the Model: Preset Parameters**

| Parameter       | Description                 | Value              | Source                 |  |  |  |  |  |  |  |
|-----------------|-----------------------------|--------------------|------------------------|--|--|--|--|--|--|--|
|                 |                             |                    |                        |  |  |  |  |  |  |  |
| J               | Maximum life span           | 16                 |                        |  |  |  |  |  |  |  |
| $j_R$           | Mandatory retirement age    | 10                 |                        |  |  |  |  |  |  |  |
| $s_0, s_1, s_2$ | Survival probability by age | -5.49, 0.15, 0.016 | Halliday (2015)        |  |  |  |  |  |  |  |
|                 | Pro                         | oduction           |                        |  |  |  |  |  |  |  |
| $\alpha$        | Share of capital            | 0.27               | NIPA                   |  |  |  |  |  |  |  |
| $\delta$        | Depreciation                | 4.5%               | NIPA                   |  |  |  |  |  |  |  |
|                 | Pre                         | ferences           |                        |  |  |  |  |  |  |  |
| $\sigma_c$      | Risk aversion               | 1.5                |                        |  |  |  |  |  |  |  |
| $\sigma_l$      | Inverse frisch elasticity   | 1.22               | Blundell et al. (2016) |  |  |  |  |  |  |  |



### **Calibration of the Model: Preset Parameters**

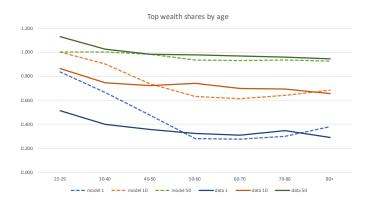
| Parameter                                           | Description                          | Value                         | Source          |  |  |  |  |  |  |  |
|-----------------------------------------------------|--------------------------------------|-------------------------------|-----------------|--|--|--|--|--|--|--|
|                                                     | Labor Productivity                   |                               |                 |  |  |  |  |  |  |  |
| $\{\varepsilon_j\}_{j=1}^{j_R-1}$<br>$\{z_1,,z_6\}$ | Age-efficiency profile               |                               | own estimate    |  |  |  |  |  |  |  |
| $\{z_1,, z_6\}$                                     | Ordinary productivity states         | own estimate                  |                 |  |  |  |  |  |  |  |
| $A_{ij}$                                            | Transition rates of ordinary product | own estimate                  |                 |  |  |  |  |  |  |  |
|                                                     | Taxes as                             | nd Transfers                  |                 |  |  |  |  |  |  |  |
| $	au_c$                                             | Marginal corporate tax rate          | 0.236                         | Gravelle (2014) |  |  |  |  |  |  |  |
| $	au_{\scriptscriptstyle S}$                        | Consumption tax rate                 | Kindermann and Krueger (2016) |                 |  |  |  |  |  |  |  |
| Tr                                                  | Government transfers / GDP           | NIPA                          |                 |  |  |  |  |  |  |  |
| G/Y                                                 | Expenditures / GDP                   | NIPA                          |                 |  |  |  |  |  |  |  |


# **Calibration of the Model: Jointly Calibrated Parameters**

| Parameter                                                                                     | Description                                                              | Value           |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------|
| $egin{array}{c} eta \ 	heta \ 	heta \end{array}$                                              | Discount rate<br>Labor disutility                                        | 0.979<br>5.5    |
| $\lambda_{in}, \lambda_{ll}, \lambda_{lh}, \lambda_{hh}$ $z_7, z_8$                           | Transition rates Top productivity states                                 |                 |
| $R_{LL}, R_{HH}, R_{	ext{top,top}} \ \kappa_L, \kappa_H, \kappa_{	ext{top}} \ \phi_1, \phi_2$ | Return transition rates<br>Rate of return multipliers<br>Bequest utility | <br>-0.42, 0.19 |
| $	au_l \ d_c$                                                                                 | Tax progressivity Corporate asset threshold                              | 18%<br>0.8      |

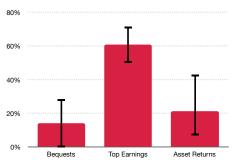
# **Taxes and bequests**

| moment                           | source                  | data | model |
|----------------------------------|-------------------------|------|-------|
| Corporate income tax revenue/GDP | NIPA                    | 2.5% | 2.6%  |
| Top 1% ATY - Bottom 99% ATY      | Piketty and Saez (2007) | 6.8% | 6.5%  |
| Bequest/Wealth                   | Guvenen et al.(2017)    | 1-2% | 1.7%  |
| 90th pct bequest dist.           | De Nardi et al. (2014)  | 4.53 | 7.5   |
| Top 2% bequest share             | Sabelhaus (2017)        | 40%  | 47%   |


### Pareto plot of the wealth distribution



- Precise fit up to top 0.1%
- Top 0.001% share falls slightly short: 3.7% in model vs 5% in data




# Additional moments: Top wealth shares by age group



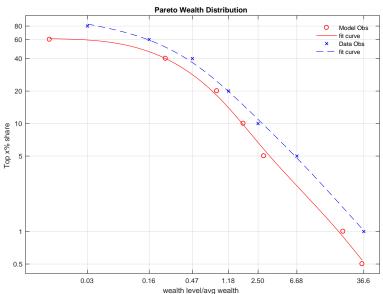


## **Counterfactuals: Eliminating individual channels**



60%

40%


20%

Bequests Top Earnings Asset Returns

Reduction in top 0.1% wealth share

Reduction in top 1% wealth share

# Pareto plot for wealth



# Top earnings levels and transitions – detail

|            | low F  |                       |            | high F     |            |                       | top states  |            |  |
|------------|--------|-----------------------|------------|------------|------------|-----------------------|-------------|------------|--|
|            | $z_1$  | <i>z</i> <sub>2</sub> | <i>Z</i> 3 | <i>Z</i> 4 | <i>Z</i> 5 | <i>z</i> <sub>6</sub> | <i>z</i> .7 | <i>Z</i> 8 |  |
| z level    | 1      | 1.97                  | 3.89       | 3.24       | 6.39       | 12.6                  | 170         | 1207       |  |
| fraction   |        |                       | 0.09       | 0.09       | 0.32       | 0.09                  | 0.006       | 0.0002     |  |
| Transition | probab | ilites:               |            |            |            |                       |             |            |  |

| enter z <sub>7</sub>   | 0.002 | $z_7 \rightarrow z_8$ | 0.026 | Prob. st | ay in top 1% |
|------------------------|-------|-----------------------|-------|----------|--------------|
| stay in z <sub>7</sub> | 0.85  | stay in $z_8$         | 0.76  | data     | 0.62         |
| leave $z_7$            | 0.13  | $z_8 \rightarrow z_7$ | 0.24  | model    | 0.60         |



# **Distribution of Earnings Growth for the Top 1% of Earners**

| Moment   | std. dev. | skewness | kurtosis |
|----------|-----------|----------|----------|
| SSA Data | 1.7       | -1.3     | 8.3      |
| Model    | 2         | -2.9     | 10.4     |

Note. – Data moments come from Guvenen, Karahan, Ozkan & Song (2015) and are based on Social Security Administration data.



#### **Counterfactual wealth distributions**

|                     | Top percentile |      |      |      |      |      |  |  |  |
|---------------------|----------------|------|------|------|------|------|--|--|--|
|                     | 0.1%           | 0.5% | 1%   | 5%   | 10%  | Gini |  |  |  |
| Data                | 0.14           | 0.28 | 0.37 | 0.63 | 0.76 | 0.85 |  |  |  |
| Benchmark model     | 0.07           | 0.26 | 0.39 | 0.65 | 0.76 | 0.86 |  |  |  |
| No top earnings     | 0.01           | 0.04 | 0.08 | 0.30 | 0.48 | 0.69 |  |  |  |
| Common return       | 0.06           | 0.24 | 0.37 | 0.62 | 0.73 | 0.85 |  |  |  |
| Homothetic bequests | 0.07           | 0.24 | 0.37 | 0.58 | 0.68 | 0.79 |  |  |  |



# Alternative calibrations - detail on marginal distributions

| awesome               |       |       | Top w | Top wealth shares |      |       | Top earnings shares |      |  |
|-----------------------|-------|-------|-------|-------------------|------|-------|---------------------|------|--|
| factor                | $r_H$ |       | 0.1%  | 1%                | 10%  | 0.1%  | 1%                  | 10%  |  |
|                       |       | data: | 0.14  | 0.37              | 0.76 | 0.06  | 0.19                | 0.49 |  |
| 1.27                  | $r_L$ |       | 0.06  | 0.37              | 0.72 | 0.06  | 0.25                | 0.44 |  |
| 1.00                  | 0.06  |       | 0.06  | 0.37              | 0.74 | 0.05  | 0.20                | 0.40 |  |
| 0.75                  | 0.11  |       | 0.07  | 0.37              | 0.75 | 0.03  | 0.16                | 0.36 |  |
| 0.50                  | 0.15  |       | 0.09  | 0.37              | 0.78 | 0.02  | 0.11                | 0.32 |  |
| 0.25                  | 0.20  |       | 0.14  | 0.37              | 0.79 | 0.014 | 0.07                | 0.28 |  |
| <i>z</i> <sub>6</sub> | 0.22  |       | 0.19  | 0.37              | 0.77 | 0.004 | 0.03                | 0.25 |  |

Notes: "awesome factor": counterfactual  $z_7$  and  $z_8$  relative to benchmark  $z_7$  and  $z_8$ .

Last line:  $z_7 = z_8 = z_6$ .



# Alternative calibrations: implications for joint distributions

#### Labor income shares:

|   | awesome               |        |         | 99-100 | 95-99    | 90-95 | 99-100 | 95-99    | 90-95 |
|---|-----------------------|--------|---------|--------|----------|-------|--------|----------|-------|
|   | factor                | $r_H$  |         | b      | y income | e     | b      | y wealth | Į.    |
|   |                       |        | data:   | 0.64   | 0.78     | 0.88  | 0.5    | 0.71     | 0.80  |
|   | 1.00                  | 0.06   |         | 0.70   | 0.80     | 0.79  | 0.53   | 0.45     | 0.64  |
|   | <i>z</i> <sub>6</sub> | 0.22   |         | 0.02   | 0.58     | 0.72  | 0.01   | 0.14     | 0.35  |
| - |                       | Correl | ations: |        |          |       |        |          |       |
|   |                       |        |         |        |          |       |        |          |       |

| awesome    | ms.   |       | Correlation of we | alth with |
|------------|-------|-------|-------------------|-----------|
| factor     | $r_H$ |       | earnings (21-64)  | income    |
|            |       | data: | 0.35              | 0.52      |
| 1.00       | 0.06  |       | 0.38              | 0.52      |
| <i>Z</i> 6 | 0.22  |       | -0.01             | 0.85      |



# Alternative calibrations: implications for wealth by age

Top 1% of wealth:

back

| awesome    |       |       | mean | fraction |       |       |         |  |
|------------|-------|-------|------|----------|-------|-------|---------|--|
| factor     | $r_H$ |       | age  | 21-30    | 31-45 | 46-65 | over 65 |  |
|            |       | data: | 61.6 | 0.01     | 0.10  | 0.50  | 0.39    |  |
| 1.27       | $r_L$ | 61.2  |      | FIL      | L IN  |       |         |  |
| 1.00       | 0.06  | 62.7  |      | FIL      | L IN  |       |         |  |
| <i>Z</i> 6 | 0.22  | 68.9  |      | FIL      | L IN  |       |         |  |

### Returns by wealth

# Expected returns by wealth group (in %)

|                  | top 0.1% | P90-95 | bottom 20% |
|------------------|----------|--------|------------|
| model            | 5.8      | 5.0    | 3.6        |
| Bach et al. 2018 | 9.3      | 5.8    | 2.8        |



### **Counterfactual Share of Income from Labor**

|                 | All<br>0-100 | Top Percentiles 99-100 |
|-----------------|--------------|------------------------|
| Data            | 0.79         | 0.58                   |
| Benchmark model | 0.79         | 0.65                   |
| Common returns  | 0.79         | 0.68                   |
| No top earnings | 0.77         | 0.63                   |