Wage employment, unemployment and self-employment across countries

Markus Poschke

McGill University

SEA 2018

Washington, DC, November 19, 2018
The distribution of employment status across countries

This paper

1. **documents** relationships between self-employment, unemployment and income per capita
2. develops a **model** for labor markets with a lot of self-employment
3. **quantitatively studies determinants** of self-employment and unemployment.
The distribution of employment status across countries

This paper

1. **documents** relationships between self-employment, unemployment and income per capita
 1.1 Higher self-employment in poorer countries. A lot of this is low-productivity own-account work.
 1.2 Higher unemployment relative to wage employment ("UN ratio") in poorer countries.
 1.3 Higher self-employment where UN ratio is high.

2. develops a **model** for labor markets with a lot of self-employment

3. **quantitatively studies determinants** of self-employment and unemployment.

Markus Poschke (McGill)
The distribution of employment status across countries

This paper

1. documents relationships between self-employment, unemployment and income per capita
 1.1 Higher self-employment in poorer countries. A lot of this is low-productivity own-account work.
 1.2 Higher unemployment relative to wage employment ("UN ratio") in poorer countries.
 1.3 Higher self-employment where UN ratio is high.

2. develops a model for labor markets with a lot of self-employment

3. quantitatively studies determinants of self-employment and unemployment.
 Labor market frictions
 3.1 can account for a very large fraction of the variation in not only unemployment but also self-employment across countries, and
 3.2 affect aggregate output via the quality of own-account workers.
Self-employment, unemployment and income per capita: Evidence from 150 censuses

- IPUMS International provides harmonized census data for 60+ countries
- covers 1960-2011
- Censuses typically about 10 years apart
- allows computing unemployment, employment and self-employment by urban/rural, education, age...
- sample used: urban, age over 16, country population > 1M
⇒ main sample: 137 censuses from 55 countries
- comparability code (3 tiers)
Empirical patterns

The classification of employment status

EMPSTAT:
- Inactive
- Unemployed
- Employed

CLASSWK:
- Self-employed
 - Own-account worker
 - Employer
- Wage/salary worker (employee)
- Unpaid
- Other
Empirical patterns

The classification of employment status

EMPSTAT:
- Inactive
- Unemployed
- Employed

CLASSWK:
- Self-employed
 - Own-account worker
 - Employer
- Wage/salary worker (employee)
- Unpaid
- Other
Empirical patterns

Labor force composition and GDP per capita

Data: IPUMS International, 196 observations, 64 countries, urban areas, 1960-2011. PWT.

Markus Poschke (McGill)
Labor force composition and GDP per capita

<table>
<thead>
<tr>
<th></th>
<th>self-employment rate</th>
<th>fraction own-account workers</th>
<th>fraction employers</th>
<th>fraction wage/salary workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(Y/L)</td>
<td>-0.132***</td>
<td>-0.143***</td>
<td>0.012***</td>
<td>0.138***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.020)</td>
<td>(0.003)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>R²</td>
<td>0.507</td>
<td>0.512</td>
<td>0.236</td>
<td>0.543</td>
</tr>
<tr>
<td>observations</td>
<td>150</td>
<td>140</td>
<td>140</td>
<td>150</td>
</tr>
<tr>
<td>countries</td>
<td>58</td>
<td>53</td>
<td>53</td>
<td>58</td>
</tr>
</tbody>
</table>

Notes: Data on urban areas. Standard errors in parentheses. Between effects regressions. *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively.
Empirical patterns

The distribution of employment status across countries

Every time GDP per capita doubles,

- the self-employment rate declines by 9 percentage points,
- the wage employment rate increases by 9 percentage points.

Robust:

- similar for entire country
- for only top tier data
The distribution of employment status across countries

Every time GDP per capita doubles,
- the self-employment rate declines by 9 percentage points,
- the wage employment rate increases by 9 percentage points.

Robust:
- similar for entire country
- for only top tier data
Empirical patterns

Unemployment and GDP per capita

coeff.: 0.003 (0.009)

Markus Poschke (McGill)
Empirical patterns

Measuring unemployment

\[u = \frac{U}{L} = \frac{U}{U + N + SE} \]

Data:
- \(U/L \) similar across countries.
- Rich countries: high \(N \), low \(SE \)
- Poor countries: high \(SE \), low \(N \)

\[\Rightarrow \text{unemployment/employment (UN) ratio } \frac{U}{U + N} \text{ high in poor countries.} \]

Measures incidence of failed search.
Measuring unemployment

\[u = \frac{U}{L} = \frac{U}{U + N + SE} \]

Data:
- \(U/L \) similar across countries.
- Rich countries: high \(N \), low \(SE \)
- Poor countries: high \(SE \), low \(N \)

\(\Rightarrow \) unemployment/employment (UN) ratio \(\frac{U}{U + N} \) high in poor countries.

Measures incidence of failed search.
Empirical patterns

Measuring unemployment

\[u = \frac{U}{L} = \frac{U}{U + N + SE} \]

Data:

- \(U/L \) similar across countries.
- Rich countries: high \(N \), low \(SE \)
- Poor countries: high \(SE \), low \(N \)

\[\Rightarrow \text{unemployment/employment (UN) ratio} \quad \frac{U}{U + N} \] high in poor countries.

Measures incidence of failed search.
Empirical patterns

The \textit{UN} ratio and GDP per capita

Notes: Data for urban areas.

Markus Poschke (McGill)
Empirical patterns

The distribution of employment status across countries

Every time GDP per capita doubles,
- the self-employment rate declines by 9 percentage points,
- the wage employment rate increases by 9 percentage points,
- the UN ratio decreases by 2.5 percentage points.

Robust:
- similar for entire country
- for only top tier data
- within age groups
Empirical patterns

The distribution of employment status across countries

Every time GDP per capita doubles,
- the self-employment rate declines by 9 percentage points,
- the wage employment rate increases by 9 percentage points,
- the UN ratio decreases by 2.5 percentage points.

Robust:
- similar for entire country
- for only top tier data
- within age groups
Empirical patterns

Self-employment and unemployment

Data: IPUMS International, data for urban areas, 135 observations, 54 countries, 1960-2011, bottom 90% of UN. PWT.

Markus Poschke (McGill)
Self-employment and unemployment, controlling for income

<table>
<thead>
<tr>
<th>dependent variable:</th>
<th>self-employment rate</th>
<th>fraction own-account workers</th>
<th>fraction employers</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN ratio</td>
<td>0.702**</td>
<td>0.802**</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>(0.285)</td>
<td>(0.312)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>log GDP per capita</td>
<td>-0.122***</td>
<td>-0.136***</td>
<td>0.012***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.020)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.556</td>
<td>0.575</td>
<td>0.229</td>
</tr>
<tr>
<td>observations</td>
<td>136</td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td>countries</td>
<td>54</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. Between effects regressions. Bottom 90% of UN. *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively.
Empirical patterns

The distribution of employment status across countries

Every time GDP per capita doubles,

1. the self-employment rate declines by 9 percentage points,
2. the wage employment rate increases by 9 percentage points,
3. the UN ratio decreases by 2.5 percentage points.

4. Self-employment rate rises by 0.5 percentage points as $U/(U + N)$ rises by 1 percentage point (at fixed GDP per capita).

Robustness:

- similar estimate for only top tier data
- 1.-3. also hold for entire country, 4. only significant in urban data

⇒ the SE-UN relationship is an urban phenomenon

Markus Poschke (McGill)
Empirical patterns

The distribution of employment status across countries

Every time GDP per capita doubles,
1. the self-employment rate declines by 9 percentage points,
2. the wage employment rate increases by 9 percentage points,
3. the UN ratio decreases by 2.5 percentage points.

4. Self-employment rate rises by 0.5 percentage points as $U/(U+N)$ rises by 1 percentage point (at fixed GDP per capita).

Robustness:
- similar estimate for only top tier data
- 1.-3. also hold for entire country, 4. only significant in urban data
⇒ the SE-UN relationship is an urban phenomenon
Model
Main model ingredients

- Builds upon Diamond-Mortensen-Pissarides.
- 4 states: employed, unemployed, self-employed, employer.
- The unemployed choose whether to
 - search for a job, or
 - start a firm, at a cost.
 ⇒ endogenous firm entry rate.
- Firms differ in productivity z.
- z is revealed after entry. Once known, two options:
 - Become an employer, post vacancies to hire workers: $y = zn\gamma$.
 - Become an own-account worker: $y = \zeta z$.
 ⇒ endogenous own-account/employer split.
Equilibrium

Equilibrium \(\theta, w \) pinned down by occupational choice and wage bargaining.

- **OC curve:** Value of search = value of entry: downward-sloping in \(\theta, w \)-space.
- **wage curve:** upward-sloping in \(\theta, w \)-space.
Quantitative Results
Quantitative Results

Quantitative exercises

1. Calibrate the model to eight countries spanning the distribution of income
2. Which factors drive cross-country differences?
3. The effect of labor market frictions
Calibration strategy: targets

<table>
<thead>
<tr>
<th>parameter</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_v</td>
<td>vacancy posting cost</td>
</tr>
<tr>
<td>A</td>
<td>matching fct. prodty</td>
</tr>
<tr>
<td>ξ</td>
<td>match destruction rate</td>
</tr>
<tr>
<td>k_f</td>
<td>entry cost</td>
</tr>
<tr>
<td>ζ</td>
<td>rel. SE productivity</td>
</tr>
<tr>
<td>λ_f</td>
<td>firm exit rate</td>
</tr>
<tr>
<td>σ_z</td>
<td>productivity variance</td>
</tr>
<tr>
<td>δ</td>
<td>probability casual work</td>
</tr>
<tr>
<td>η</td>
<td>worker bargaining power</td>
</tr>
<tr>
<td>b</td>
<td>u flow value</td>
</tr>
</tbody>
</table>
Quantitative Results

Calibration: target countries

<table>
<thead>
<tr>
<th>Country</th>
<th>u (%)</th>
<th>u outflow rate (%)</th>
<th>own-account workers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia</td>
<td>23.7</td>
<td>4.4</td>
<td>28.8</td>
</tr>
<tr>
<td>Indonesia</td>
<td>5.8</td>
<td>9.1</td>
<td>31.1</td>
</tr>
<tr>
<td>Mexico</td>
<td>4.2</td>
<td>39.8</td>
<td>22.1</td>
</tr>
<tr>
<td>Italy</td>
<td>15.2</td>
<td>6.2</td>
<td>15.7</td>
</tr>
<tr>
<td>France</td>
<td>13.0</td>
<td>8.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Germany</td>
<td>10.7</td>
<td>6.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Canada</td>
<td>6.9</td>
<td>25.6</td>
<td>6.9</td>
</tr>
<tr>
<td>US</td>
<td>5.1</td>
<td>44.0</td>
<td>4.9</td>
</tr>
<tr>
<td>average</td>
<td>10.6</td>
<td>18.0</td>
<td>14.9</td>
</tr>
</tbody>
</table>
Calibrated parameters: some highlights

<table>
<thead>
<tr>
<th></th>
<th>Ethiopia</th>
<th>USA</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model moments:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment outflow rate</td>
<td>0.044</td>
<td>0.453</td>
<td>0.180</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>0.237</td>
<td>0.051</td>
<td>0.106</td>
</tr>
<tr>
<td>Self-employment rate</td>
<td>0.348</td>
<td>0.098</td>
<td>0.193</td>
</tr>
<tr>
<td>Fraction own-account workers</td>
<td>0.288</td>
<td>0.050</td>
<td>0.149</td>
</tr>
<tr>
<td>Share of employment firms with $n > 10$</td>
<td>0.089</td>
<td>0.848</td>
<td>0.740</td>
</tr>
<tr>
<td>Parameter values:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacancy posting cost k_v</td>
<td>69</td>
<td>12</td>
<td>45.4</td>
</tr>
<tr>
<td>Job destruction rate ξ (%)</td>
<td>3.2</td>
<td>1.36</td>
<td>1.43</td>
</tr>
<tr>
<td>Firm entry cost k_f</td>
<td>13.54</td>
<td>56</td>
<td>7.5</td>
</tr>
<tr>
<td>Relative own-account productivity ζ</td>
<td>0.519</td>
<td>0.657</td>
<td>0.605</td>
</tr>
<tr>
<td>Productivity dispersion σ_z</td>
<td>0.0224</td>
<td>0.164</td>
<td>0.32</td>
</tr>
</tbody>
</table>
What accounts for model fit?

Calibration: choose value for 8 parameters per country to match 8 targets.

Which parameters matter for capturing cross-country variation?

Approach:

- Benchmark: calibration outcomes for each country using parameters from average country calibration.
- Then allow 1, 2 or 3 parameters to be country-specific, to achieve best calibration fit in each country.
- Measure
 - decline in the calibration loss function (total across countries)
 - decline in sum of squared deviation between model outcomes and data for u, UN, SE
Labor market frictions central for explaining variation

<table>
<thead>
<tr>
<th>Overall fit</th>
<th>unemployment outflow rate</th>
<th>(u)</th>
<th>(UN) ratio</th>
<th>SE rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>One country-specific parameter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_f)</td>
<td>0.173</td>
<td>0.099</td>
<td>-0.075</td>
<td>0.143</td>
</tr>
<tr>
<td>(k_v)</td>
<td>0.438</td>
<td>0.715</td>
<td>0.306</td>
<td>0.370</td>
</tr>
<tr>
<td>(\eta)</td>
<td>0.118</td>
<td>0.209</td>
<td>0.213</td>
<td>0.117</td>
</tr>
<tr>
<td>(b)</td>
<td>0.124</td>
<td>0.167</td>
<td>0.003</td>
<td>-0.013</td>
</tr>
<tr>
<td>(\xi)</td>
<td>0.190</td>
<td>0.021</td>
<td>0.284</td>
<td>0.413</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>0.138</td>
<td>-0.017</td>
<td>-0.113</td>
<td>0.003</td>
</tr>
<tr>
<td>Two country-specific parameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_v, \xi)</td>
<td>0.708</td>
<td>0.939</td>
<td>0.191</td>
<td>0.336</td>
</tr>
<tr>
<td>Three country-specific parameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_v, b, \xi)</td>
<td>0.915</td>
<td>0.987</td>
<td>0.984</td>
<td>0.988</td>
</tr>
</tbody>
</table>
Quantitative Results

Labor market frictions central for explaining variation

<table>
<thead>
<tr>
<th>Overall fit</th>
<th>unemployment outflow rate</th>
<th>u</th>
<th>UN ratio</th>
<th>SE rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>One country-specific parameter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_f</td>
<td>0.173</td>
<td>0.099</td>
<td>-0.075</td>
<td>0.143</td>
</tr>
<tr>
<td>k_v</td>
<td>0.438</td>
<td>0.715</td>
<td>0.306</td>
<td>0.370</td>
</tr>
<tr>
<td>η</td>
<td>0.118</td>
<td>0.209</td>
<td>0.213</td>
<td>0.117</td>
</tr>
<tr>
<td>b</td>
<td>0.124</td>
<td>0.167</td>
<td>0.003</td>
<td>-0.013</td>
</tr>
<tr>
<td>ξ</td>
<td>0.190</td>
<td>0.021</td>
<td>0.284</td>
<td>0.413</td>
</tr>
<tr>
<td>ζ</td>
<td>0.138</td>
<td>-0.017</td>
<td>-0.113</td>
<td>0.003</td>
</tr>
<tr>
<td>Two country-specific parameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_v, ξ</td>
<td>0.708</td>
<td>0.939</td>
<td>0.191</td>
<td>0.336</td>
</tr>
<tr>
<td>Three country-specific parameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_v, b, ξ</td>
<td>0.915</td>
<td>0.987</td>
<td>0.984</td>
<td>0.988</td>
</tr>
</tbody>
</table>
Can the model account for the self-employment/unemployment relationship?

Parameters from the average economy calibration, except k_v and ξ (2 parameters), plus b (3 parameters)
Summary of decomposition

1. Variation in labor market parameters \((k_v, \xi, b)\) across countries is key for
 - overall fit
 - variation in unemployment
 - variation in self-employment
 - joint variation in unemployment and self-employment.

2. Other parameters \((k_f, \zeta)\) fit variation in self-employment, but have counterfactual implications for unemployment.
Quantitative Results

The effect of labor market frictions

Illustrate their effect on

- labor market outcomes
- output

for different settings.
Quantitative Results

The effect of varying labor market frictions on unemployment and self-employment

(a) Low k_f (from average country calibration): k_v mostly affects SE

(b) High k_f (from US calibration): k_v mostly affects UN

Self-employment is an important margin for “escaping” frictions.

Markus Poschke (McGill)
The effect of labor market frictions on output

Experiment: reduce k_v by half.

<table>
<thead>
<tr>
<th>% change in</th>
<th>calibration to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>average economy</td>
</tr>
<tr>
<td>output:</td>
<td></td>
</tr>
<tr>
<td>aggregate output</td>
<td>4.0</td>
</tr>
<tr>
<td>counterfactual output:</td>
<td></td>
</tr>
<tr>
<td>only u changes</td>
<td>2.9</td>
</tr>
<tr>
<td>only SE rate changes</td>
<td>1.2</td>
</tr>
</tbody>
</table>

- **High k_f:** labor market frictions mostly affect output via u.
- **Low k_f:** k_v affects output via occupational choice and the quality of entrepreneurs.
Quantitative Results

Conclusion

1. Poor countries feature high unemployment and high self-employment.

2. An extended DMP model can serve to model poor country labor markets with high u and SE.

3. The model suggests that cross-country differences in labor market frictions are the source not only for differences in unemployment, but also in self-employment.

4. Labor market frictions
 - strongly increase self-employment, and
 - can reduce output by encouraging low-productivity own-account work.
Challenges and future directions

- Worker and match heterogeneity
 ⇒ requires a decent-sized urban panel
- Entry investment choice, frictions at entry
- Life cycle
Appendix
Labor force composition and GDP per capita – countrywide

Data: IPUMS International, 214 observations, 68 countries, 1960-2011. PWT.
Labor force composition and GDP per capita – urban, incl. unpaid

Data: IPUMS International, 42 countries, 1960-2011. PWT.
Self-employment and unemployment

Are self-employment and unemployment mutually exclusive?

- UEUS data: average weekly hours worked are 50 for SE, 1.3 for the unemployed.
- Abebe et al. (2016) survey: Rare for job seekers to engage in self-employment.
- Franklin (2014): Job search is time consuming and costly. Often requires physical travel to read job ads and drop off applications.

- How is job search financed? With casual work. Readily available; does not require capital. Censuses capture casual work as a separate category.